期刊《ACIJournal》论文投稿模板.docx
12345678910111213141516171819202122232425DurabilityofConcreteinTidalEnvironment(70CharactersMaximum,Titlecasepreferred)byJohnSmithandDavidLee(NOTE:Thetitle,names,text,equations,tablesandfigureshavebeenalteredandpastedfromdifferentmanuscriptsforthepurposeofformatillustrationONLY.ThiSformatCanbeUSedasatemplatetoCoPyandDaSteyourmanuscripttitlesandsections.)Biography:(75WordsMaximumforeachauthor)AClmemberJohnSmithisaResearchEngineerattheMaterialsDivision,PortandAirportResearchInstitute,HereceivedhisBSfrom;MSfrom;andPhDfromHeisamemberofACICommittees221(Aggregates),302(Constructionofconcretefloors),and325(Concretepavements).Hisresearchinterestsincludedurabilityofreinforcedconcretestructuresinthemarineenvironment.DavidLeeisaresearcheratABSTRACT(orSYNOPSIS)(150WordsMaximum)Adetailedinvestigationontheconcretespecimens(3.94in.1100mmdiameterand7.87in.1200mmheight)(UnitsofmeasurementmustbeSIprimaryordualunitsifUSin.-lb)madewithdifferentchemicaladmixtureswascarriedoutafter10yearsoftidalexposure.Chemicaladmixturesincludeair-entrainingadmixture(vinsol),water-reducingadmixture(Iingosulfonategroup),varioushigh-rangewater-reducingandair-entrainingadmixtures(naphthalene,melamine,polycarboxylandamino-sulfbnategroup)anddrying-shrinkage-reducingadmixture(glycoletherplusaminoalcoholderivatives).Thespecimensweretestedforcompressivestrength,Young'smodulusofelasticity,carbonationdepths,chlorideingress,123456789101112131415161718192021222324poresizedistribution,electrochemicalandphysicalevaluationofsteelbar,scorrosioninconcrete,examinationofsteel-concreteinterfaces,andmineralogyofthemortarportionsofconcreteKeywords:(9KeywordsMaximum;alphabeticalorder)chemicaladmixture;chlorideingress;corrosion;durability;INTRODUCTIONWater-reducingchemicaladmixturesareusedtoproduceconcreteofhigherstrength,obtainaspecifiedstrengthatlowerwater-cementitiousratios(wc),orincreasetheslumpofagivenmixturewithoutanincreaseinwatercontent.Numerousstudiesonthepropertiesoffreshconcretemixedwithdifferentchemicaladmixtureswerecarriedouttoinvestigatethefreshconcretepropertiesortheconcretepropertiesatanearlyageofexposure.Therewerealsoseveralinternationalconferencesheldfocusingonthechemicaladmixturesinthelastcoupleofdecades.Detailedstudiesonthelong-termperformanceofconcretemixedwithdifferentchemicaladmixtures,however,areveryscarceinthetechnicalliterature.Therefore,studiesonthelong-termperformanceofchemicaladmixtureswillbeRESEARCHSIGNIFICANCE(100WordsMaximum)Differenttypesofhigh-rangewater-reducingandair-entrainingchemicaladmixturesweredevelopedinthelastcoupleofdecades.Mostofthestudiesontheseadmixtureswerecarriedouttojudgethepropertiesoffreshconcrete,orthepropertiesofconcreteatanearlyage.Studiesonthelong-termperformanceofconcretemadewithdifferentwater-reducingadmixturesareveryscarceinthetechnicalliteratures.Theauthorsbelievethatthisdetailstudydealingwiththelong-termperformanceofdifferentchemicaladmixturesiscarriedoutforthefirsttimeandwillbeveryusefultoconcretetechnology.12345678910111213141516171819202122232425EXPERIMENTALINVESTIGATION(OREXPERIMENTALPROCEDURE)Cylinderspecimenswithandwithoutsteelreinforcements(3.94in.100mmdiameterand7.87in.200mmheight)of19separatecaseswereinvestigated.Thevariablesincludecementtypes(ordinaryportlandcement,blendedcementreplacedbyslagpowderof4080and7900cm2g),air-entraining(vinsol)chemicaladmixture,water-reducing(Iignosulfonatetype)chemicaladmixture,high-rangewater-reducingandair-entraining(naphthalene,melamine,polycarboxyl,andamion-sulfonatetypes)chemicaladmixture,drying-shrinkage-reducingchemicaladmixture(glycoletherplusaminoalcoholderivatives),slagcontent,andwc.Thespecimenswereexposedtoatidalpoolfor10yearsusingseawater.Ineachcase,fourspecimenswithoutreinforcementandthreespecimenswithreinforcementwereinvestigatedMaterialsOrdinaryportlandcement(OPC)andblendedcementsbyreplacingaportionofthecementwithslagpowderwereused.TwokindsofslagpowderswereusedwithBlainefinenessofabout7900cm2gag1)and4080cm2g(Slag2).ThephysicalpropertiesandchemicalanalysisofthecementandslagpowdersarelistedinTable1.Riversandandcrushedgranitecoarseaggregateswereused.Thespecificgravity,waterabsorption,andfinenessmodulusofsand(passingthrough0.20in.5mmsieveopeningsize)are2.63,1.63and2.73,respectively.ThecharacteristicsofCFRPtendons/CFCCstrandsaresummarizedinTable2Specimens123456789101112131415161718192021222324Plainandreinforcedcylinderspecimensofdiameter3.94in.(100mm)andlength7.87in.(200mm)wereinvestigated.ThetestsetupisshowninFig.1.Roundsteelbarsofdiameter0.35in.(9mm)andlength5.51in.(140mm)wereembeddedatcoverdepthsof0.79and1.79in.(20and45.5mm).ItemsofinvestigationAttheageof28days,plainconcretespecimensweretestedforcompressivestrengthandYoung,smodulusofelasticityofconcreteasperJISAl108andJSCEG502,respectively.Also,after10yearsofcontinuousexposure,thespecimensweretransferredfromtheexposuresitetothelaboratory,cleaned,andthentestedforcompressivestrengthandYoung,smodulusofelasticityANALYTICALINVESTIGATION(ORANALYTICALPROCEDURE)ThemaximumprestressforceintheCFRPtendonsshouldbelimitedto65%ofthespecifiedtensilestrengthoftendons4,5(Numberedreferencesoption1).ItissuggestedbyHognested14(Numberedreferenceoption2)thatanappropriatevalueoftheelasticmodulusofaconcretemember,subjectedtobendingandaxialload,canbeobtainedfrom(Equationsshouldbenumbered):W=473"(Nmm2)(1)wheref('isthecylinderstrengthofconcreteP,=0.854良(18)where(NotationOption1:Listsymbolsafterequationsasshownhere,especiallyifthereareonlyafewsymbols)isfactordefinedastheratioofthedepthOfequivalentrectangularstressblocktothedistancefromtheextremecompressionfibertotheneutralaxis;fcisspecifiedcompressivestrengthofconcrete;fittisspecifiedtensilestrengthofbondedprestressingtendons;andEPbmiisinitialprestressingstraininbondedprestressingtendonsofm-throw(bottomrow).23456789101112131415161718192021222324COMPARISONOFPREDICTIONSANDEXPERIMENTALRESULTS(Ifapplicable)ThecomparisonofthepredictionsusingtheanalyticalmodeldevelopedinthisstudyandtheexperimentalresultsfromthetestingdescribedaboveorintheliteratureareshowninTable3.ItshowsthatthepredictionsareEXPERIMENTALRESULTSANDDISCUSSIONCompressivestrengthandYoung,smodulusofelasticityCompressivestrengthsandYoung,smodulusofelasticityofconcreteat28daysandafter10yearsofexposureinthetidalenvironmentareshowninFig.2and3,respectivelyCarbonationdepthandchlorideionprofileThecarbonationdepthofthespecimenswasnegligibleirrespectiveofthecasesinvestigatedherein.Water-andacid-solublechlorideconcentrationsattheaveragesamplingdepthsof0.10,0.39,0.79,1.28and1.79in.(2.5,10,20,32.5and45.5mm)fromthesurfaceofthespecimensareshowninFig.4and5forCases1to161.oad-deflectionrelationship.Theload-deflectionrelationshipofslabsisshowninFig.6FURTHERRESEARCH(Ifapplicable)Itisdesirabletotestspecimensattheageof20ormoreyearsofexposure,andeffortsshouldbemadetofindoutthepossiblewaystoincreasethechloridethresholdvaluerelatedto12345678910111213141516171819202122232425corrosionofsteelbarsinconcrete.TheresultsofsuchstudieswoulddirectlybenefittheconstructionindustryCONCLUSIONS(ORSUMMARYANDCONCLUSIONS)Basedontheresultsofthisexperimentalinvestigationundertidalenvironment,thefollowingconclusionsaredrawn:1. Naphthalenegroupofhigh-rangewater-reducingandair-entrainingchemicaladmixtureshowsthebestperformanceagainstthestrengthdevelopmentandchlorideioningresspreventioninconcrete;and2. Polycarboxylgroupofchemicaladmixtureshowstheleastperformanceamongthechemicaladmixturesinvestigatedhereagainstlong-termstrengthdevelopmentaswellaschlorideingresspreventioninconcreteACKNOWLEDGMENTS(IfapplicabIe)TheauthorswishtoexpresstheirgratitudeandsincereappreciationtotheauthorityofPortandAirport Research Institute,forfinancingthisresearchworkandalsoseveralon-goingresearchprojectsrelatedtothedurabilityofconcretestructuresNOTATION:(NotationOption2:Notationhere,especiallyifthelistofsymbolsislong)a=radiusofslabc=diameter/sidelengthofloadedareack=parameterrelatedtoratioofcompressivetotensilestrengthsofconcreteREFERENCES(Numbered)1.Nagataki,S.,uStateoftheArtReportonAir-EntrainingHighRangeWater-Reducing1 Admixture,ConcreteJournalofJCIyJapan,V.28,No.6,1990,pp.5-15.2 2.Hattori,K.,ExperienceswithMightySuperplasticizerinJapan,Superplasticizersin3 Concrete,SP-62,V.M.Malhotra,ed.,AmericanConcreteInstitute,FarmingtonHills,Mich.,41979,pp.37-66.5 3.Lin,T.Y.,andBums,N.H.,uDesignOfPrestressedConcreteStructures,3rdEdition,John6 Wiley&SonsPublisher,NewYork,1981,368pp.7 4.Naaman,A.E.,andAlkhairi,F.M.,“StressatUltimateinUnbondedPost-tensioning8 Tendons:Part2-ProposedMethodology,ACIStructuralJournal,V.88,No.6,Nov.-Dec.91991,pp.683-692.10 5.Grace,N.F.,andAbdeI-Sayed,G.,“DuctilityofPrestressedConcreteBridgesUsingCFRP11 Strands,ConcreteInternational,V.20,No.6,June1998,pp.25-30.1213 APPENDIX14 (Optional,foradditionalsupportinginformation,orforNotation,ifthelistisverylong)15 Thefollowingsymbolsareusedinthepaper:16 a=depthofequivalentrectangularcompressionblock17 Ac=cross-sectionalareaofcompositeDT-beam1819 TABLESANDFIGURES20 1.istofTables:21 Table1-Physicalandchemicalcompositionsofcementandslags22 Table2-CharacteristicsofCFRPtendons/CFCCstrands2324 1.istofFigures:25 Fig.I-Anoverviewofaspecimeninpositionreadyfortesting.2Fig.6-Peaklateralstiffnessversusapplieddriftratio.3Table!-PhysicalandchemicalcompositionsofcementandslagOPCSlag1Slag2Specificgravity3.162.902.90Blainefineness,cm2g319079004080Lossofignition,%0.7SiO2,%21.332.733.2AI2O3,%5.313.814.1CaO,%64.442.442.3MgO,%2.25.95.9SO3,%1.92.02.0Na2O,%0.28K20,%0.6TiO2,%0.37MnO,%0.1Fe2O3,%2.60.20.24Note:""isnotmeasureditems.6 Table2-CharacteristicsofCFRPtendons/CFCCstrands7 (Listthesecondaryunitsinparentheses)CharacteristicsLeadIineTM(MCC25)CFCC1x7(TokyoRope26)CFCC1x37(TokyoRope26)Nominaldiameter,in.(mm)0.39(10)0.5(12.5)1.57(40)Effectivecross-sectionalarea,in.2(mm2)0.111(71.6)0.118(76.0)1.17(752.6)Guaranteedtensilestrength,ksi(kNmm2)328(2.26)271(1.87)205(1.41)Specifiedtensilestrength*,ksi(kNmm2)415(2.86)305(2.10)271(1.87)Young,smodulusofelasticity,ksi(kNmm2)21,320(147)19,865(137)18,419(127)Elongation,%1.91.51.5Guaranteedbreakingload,kip(kN)36.4(162)31.9(142)240.5(1070)Ultimatebreakingload,kip(kN)46(204.7)36(160)316.9(1410)8"Ultimatetensilestrengthcharacteristicsoftendonsandstrandswereobtainedfromthetest,whereasthemanufacturerssuppliedotherproperties.Fig. I-An overview of, a specimen in position readv for testing.O 123456789Lateral Drift-Ratio (%)O5 Fig.6-Peaklateralstiffnessversusapplieddriftratio.6 (AdddualunitsoppositetomainunitsonlyifunitsareinUSin.-lb)7 (Inthecaseofverycomplexandlargetablesandfigures,twooptionsareacceptable:8 (a)Provideaduplicatetableorfigurewiththesecondaryunits.9 (b)ProvidetheconversionfactorsfortheunitsusedinthetableorfigureundertheIOtableorfigure(onlypossibleifspacepreventsitem(a).