欢迎来到课桌文档! | 帮助中心 课桌文档-建筑工程资料库
课桌文档
全部分类
  • 党建之窗>
  • 感悟体会>
  • 百家争鸣>
  • 教育整顿>
  • 文笔提升>
  • 热门分类>
  • 计划总结>
  • 致辞演讲>
  • 在线阅读>
  • ImageVerifierCode 换一换
    首页 课桌文档 > 资源分类 > DOCX文档下载  

    软件工程专业毕业设计外文文献解析.docx

    • 资源ID:1053030       资源大小:35.38KB        全文页数:21页
    • 资源格式: DOCX        下载积分:5金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要5金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    软件工程专业毕业设计外文文献解析.docx

    学校代码:10128生.本科毕业设计外文文献翻译英文题目:SoftwareDatabaseAnObject-OrientedPerspective.中文题目:软件数据库的面向对象的视角学生姓名:宋兰兰学院:信息工程学院系别:软件工程系W业加姓Tw二。一三年六月AHISTORICALPERSPECTIVEFromtheearliestdaysofcomputers,storingandmanipulatingdatahavebeenamajorapplicationfocus.Thefirstgeneral-purposeDBMSwasdesignedbyCharlesBachmanatGeneralElectricintheearly1960sandwascalledtheIntegratedDataStore.Itformedthebasisforthenetworkdatamodel,whichwasstandardizedbytheConferenceonDataSystemsLanguages(CODASYL)andstronglyinfluenceddatabasesystemsthroughthe1960s.BachmanwasthefirstrecipientofACM,sTuringAward(thecomputerscienceequivalentofaNobelprize)forworkinthedatabasearea;hereceivedtheawardin1973.Inthelate1960s,IBMdevelopedtheInformationManagementSystem(IMS)DBMS,usedeventodayinmanymajorinstallations.IMSformedthebasisforanalternativedatarepresentationframeworkcalledthehierarchicaldatamodel.TheSABREsystemformakingairlinereservationswasjointlydevelopedbyAmericanAirlinesandIBMaroundthesametime,anditallowedseveralpeopletoaccessthesamedatathroughcomputernetwork.Interestingly,todaythesameSABREsystemisusedtopowerpopularWeb-basedtravelservicessuchasTravelocity!In1970,EdgarCodd,atlBM,sSanJoseResearchLaboratory,proposedanewdatarepresentationframeworkcalledtherelationaldatamodel.Thisprovedtobeawatershedinthedevelopmentofdatabasesystems:itsparkedrapiddevelopmentofseveralDBMSsbasedontherelationalmodel,alongwitharichbodyoftheoreticalresultsthatplacedthefieldonafirmfoundation.Coddwonthe1981TuringAwardforhisseminalwork.Databasesystemsmaturedasanacademicdiscipline,andthepopularityofrelationalDBMSschangedthecommerciallandscape.Theirbenefitswerewidelyrecognized,andtheuseofDBMSsformanagingcorporatedatabecamestandardpractice.Inthe1980s,therelationalmodelconsolidateditspositionasthedominantDBMSparadigm,anddatabasesystemscontinuedtogainwidespreaduse.TheSQLquerylanguageforrelationaldatabases,developedaspartofIBM,sSystemRproject,isnowthestandardquerylanguage.SQLwasstandardizedinthelate1980s,andthecurrentstandard,SQL-92,wasadoptedbytheAmericanNationalStandardsInstitute(ANSI)andInternationalStandardsOrganization(ISO).Arguably,themostwidelyusedfbnofconcurrentprogrammingistheconcurrentexecutionofdatabaseprograms(calledtransactions).Userswriteprogramsasiftheyaretoberunbythemselves,andtheresponsibilityforrunningthemconcurrentlyisgiventotheDBMS.JamesGraywonthe1999TuringawardforhiscontributionstothefieldoftransactionmanagementinaDBMS.Inthelate1980sandthe1990s,advanceshavebeenmadeinmanyareasofdatabasesystems.Considerableresearchhasbeencarriedoutintomorepowerfulquerylanguagesandricherdatamodels,andtherehasbeenabigemphasisonsupportingcomplexanalysisofdatafromallpartsofanenterprise.Severalvendors(e.g.,IBM,sDB2,Oracle8,InformixUDS)haveextendedtheirsystemswiththeabilitytostorenewdatatypessuchasimagesandtext,andwiththeabilitytoaskmorecomplexqueries.Specializedsystemshavebeendevelopedbynumerousvendorsforcreatingdatawarehouses,consolidatingdatafromseveraldatabases,andforcarryingoutspecializedanalysis.Aninterestingphenomenonistheemergenceofseveralenterpriseresourceplanning(ERP)andmanagementresourceplanning(MRP)packages,whichaddasubstantiallayerofapplication-orientedfeaturesontopofaDBMS.WidelyusedpackagesincludesystemsfromBaan,Oracle,PeopleSoft,SAP,andSiebel.Thesepackagesidentifyasetofcommontasks(e.g.,inventorymanagement,humanresourcesplanning,financialanalysis)encounteredbyalargenumberoforganizationsandprovideageneralapplicationlayertocarryoutthesetasks.ThedataisstoredinarelationalDBMS,andtheapplicationlayercanbecustomizedtodifferentcompanies,leadingtolowerIntroductiontoDatabaseSystemsoverallcostsforthecompanies,comparedtothecostofbuildingtheapplicationlayerfromscratch.Mostsignificantly,perhaps,DBMSshaveenteredtheInternetAge.WhilethefirstgenerationofWebsitesstoredtheirdataexclusivelyinoperatingsystemsfiles,theuseofaDBMStostoredatathatisaccessedthroughaWebbrowserisbecomingwidespread.QueriesaregeneratedthroughWeb-accessiblefbsandanswersareformattedusingamarkuplanguagesuchasHTML,inordertobeeasilydisplayedinabrowser.AllthedatabasevendorsareaddingfeaturestotheirDBMSaimedatmakingitmoresuitablefordeploymentovertheInternet.Databasemanagementcontinuestogainimportanceasmoreandmoredataisbroughton-line,andmadeevermoreaccessiblethroughcomputernetworking.Todaythefieldisbeingdrivenbyexcitingvisionssuchasmultimediadatabases,interactivevideo,digitallibraries,ahostofscientificprojectssuchasthehumangenomemappingeffortandNASA,sEarthObservationSystemproject,andthedesireofcompaniestoconsolidatetheirdecision-makingprocessesandminetheirdatarepositoriesforusefulinformationabouttheirbusinesses.Commercially,databasemanagementsystemsrepresentoneofthelargestandmostvigorousmarketsegments.Thusthes-tudyofdatabasesystemscouldprovetoberichlyrewardinginmorewaysthanone!INTRODUCTIONTOPHYSICALDATABASEDESIGN1.ikeallotheraspectsofdatabasedesign,physicaldesignmustbeguidedbythenatureofthedataanditsintendeduse.Inparticular,itisimportanttounderstandthetypicalworkloadthatthedatabasemustsupport;theworkloadconsistsofamixofqueriesandupdates.Usersalsohavecertainrequirementsabouthowfastcertainqueriesorupdatesmustrunorhowmanytransactionsmustbeprocessedpersecond.Theworkloaddescriptionandusers,performancerequirementsarethebasisonwhichanumberofdecisionshavetobemadeduringphysicaldatabasedesign.Tocreateagoodphysicaldatabasedesignandtotunethesystemforperformanceinresponsetoevolvinguserrequirements,thedesignerneedstounderstandtheworkingsofaDBMS,especiallytheindexingandqueryprocessingtechniquessupportedbytheDBMS.Ifthedatabaseisexpectedtobeaccessedconcurrentlybymanyusers,orisadistributeddatabase,thetaskbecomesmorecomplicated,andotherfeaturesofaDBMScomeintoplay.DATABASEWORKLOADSThekeytogoodphysicaldesignisarrivingatanaccuratedescriptionoftheexpectedworkload.Aworkloaddescriptionincludesthefollowingelements:1. Alistofqueriesandtheirfrequencies,asafractionofallqueriesandupdates.2. Alistofupdatesandtheirfrequencies.3. Performancegoalsforeachtypeofqueryandupdate.Foreachqueryintheworkload,Wemustidentify:Whichrelationsareaccessed.Whichattributesareretained(intheSELECTclause).Whichattributeshaveselectionorjoinconditionsexpressedonthem(intheWHEREclause)andhowselectivetheseconditionsarelikelytobe.Similarly,foreachupdateintheworkload,wemustidentify:Whichattributeshaveselectionorjoinconditionsexpressedonthem(intheWHEREclause)andhowselectivetheseconditionsarelikelytobe.Thetypeofupdate(INSERT,DELETE,orUPDATE)andtheupdatedrelation.ForUPDATEcommands,thefieldsthataremodifiedbytheupdate.Rememberthatqueriesandupdatestypicallyhaveparameters,forexample,adebitorcreditoperationinvolvesaparticularaccountnumber.Thevaluesoftheseparametersdetermineselectivityofselectionandjoinconditions.Updateshaveaquerycomponentthatisusedtofindthetargettuples.Thiscomponentcanbenefitfromagoodphysicaldesignandthepresenceofindexes.Ontheotherhand,updatestypicallyrequireadditionalworktomaintainindexesontheattributesthattheymodify.Thus,whilequeriescanonlybenefitfromthepresenceofanindex,anindexmayeitherspeeduporslowdownagivenupdate.Designersshouldkeepthistrade-offerinmindwhencreatingindexes.NEEDFORDATABASETUNINGAccurate,detailedworkloadinformationmaybehardtocomebywhiledoingtheinitialdesignofthesystem.Consequently,tuningadatabaseafterithasbeendesignedanddeployedisimportant-Wemustrefinetheinitialdesigninthelightofactualusagepatternstoobtainthebestpossibleperformance.Thedistinctionbetweendatabasedesignanddatabasetuningissomewhatarbitrary.Wecouldconsiderthedesignprocesstobeoveronceaninitialconceptualschemaisdesignedandasetofindexingandclusteringdecisionsismade.Anysubsequentchangestotheconceptualschemaortheindexes,say,wouldthenberegardedasatuningactivity.Alternatively,wecouldconsidersomerefinementoftheconceptualschema(andphysicaldesigndecisionsaffectedbythisrefinement)tobepartofthephysicaldesignprocess.WhereWedrawthelinebetweendesignandtuningisnotveryimportant.OVERVIEWOFDATABASETUNINGAftertheinitialphaseofdatabasedesign,actualuseofthedatabaseprovidesavaluablesourceofdetailedinformationthatcanbeusedtorefinetheinitialdesign.Manyoftheoriginalassumptionsabouttheexpectedworkloadcanbereplacedbyobservedusagepatterns;ingeneral,someoftheinitialworkloadspecificationwillbevalidated,andsomeofitwillturnouttobewrong.Initialguessesaboutthesizeofdatacanbereplacedwithactualstatisticsfromthesystemcatalogs(althoughthisinformationwillkeepchangingasthesystemevolves).Carefulmonitoringofqueriescanrevealunexpectedproblems;forexample,theoptimizermaynotbeusingsomeindexesasintendedtoproducegoodplans.Continueddatabasetuningisimportanttogetthebestpossibleperformance.TUNINGTHECONCEPTUALSCHEMAInthecourseofdatabasedesign,wemayrealizethatourcurrentchoiceofrelationschemasdoesnotenableusmeetourperformanceobjectivesforthegivenworkloadwithany(feasible)setofphysicaldesignchoices.Ifso,wemayhavetoredesignourconceptualschema(andre-examinephysicaldesigndecisionsthatareaffectedbythechangesthatwemake).Wemayrealizethataredesignisnecessaryduringtheinitialdesignprocessorlater,afterthesystemhasbeeninuseforawhile.Onceadatabasehasbeendesignedandpopulatedwithdata,changingtheconceptualschemarequiresasignificanteffortintermsofmappingthecontentsofrelationsthatareaffected.Nonetheless,itmaysometimesbenecessarytorevisetheconceptualschemainlightofexperiencewiththesystem.Wenowconsidertheissuesinvolvedinconceptualschema(re)designfromthepointofviewofperformance.Severaloptionsmustbeconsideredwhiletuningtheconceptualschema:Wemaydecidetosettlefora3NFdesigninsteadofaBCNFdesign.Iftherearetwowaystodecomposeagivenschemainto3NForBCNF,ourchoiceshouldbeguidedbytheworkload.SometimesWemightdecidetofurtherdecomposearelationthatisalreadyinBCNEInothersituationsWemightdenormalize.Thatis,wemightchoosetoreplaceacollectionofrelationsobtainedbyadecompositionfromalargerrelationwiththeoriginal(larger)relation,eventhoughitsuffersfromsomeredundancyproblems.Alternatively,wemightchoosetoaddsomefieldstocertainrelationstospeedupsomeimportantqueries,evenifthisleadstoaredundantstorageofsomeinformation(andconsequently,aschemathatisinneither3NFnorBCNF).Thisdiscussionofnormalizationhasconcentratedonthetechniqueofdecomposition,whichamountstoverticalpartitioningofarelation.Anothertechniquetoconsiderishorizontalpartitioningofarelation,whichwouldleadtoourhavingtworelationswithidenticalschemas.Notethatwearenottalkingaboutphysicallypartitioningthecuplesofasinglerelation;rather,wewanttocreatetwodistinctrelations(possiblywithdifferentconstraintsandindexesoneach).Incidentally,whenweredesigntheconceptualschema,especiallyifwearetuninganexistingdatabaseschema,itisworthconsideringwhetherWeshouldcreateviewstomaskthesechangesfromusersforwhomtheoriginalschemaismorenatural.TUNINGQUERIESANDVIEWSIfwenoticethataqueryisrunningmuchslowerthanweexpected,wehavetoexaminethequerycarefullytoendtheproblem.Somerewritingofthequery,perhapsinconjunctionwithsomeindextuning,canoften?xtheproblem.Similartuningmaybecalledforifqueriesonsomeviewrunslowerthanexpected.Whentuningaquery,thefirstthingtoverifyisthatthesystemisusingtheplanthatyouexpectittouse.Itmaybethatthesystemisnotfindingthebestplanforavarietyofreasons.Somecommonsituationsthatarenothandledefficientlybymanyoptimizersfollow:Aselectionconditioninvolvingnullvalues.Selectionconditionsinvolvingarithmeticorstringexpressionsorconditionsusingtheorconnective.Forexample,ifwehaveaconditionE.age=2*D.ageintheWHEREclause,theoptimizermaycorrectlyutilizeanavailableindexonE.agebutfailtoutilizeanavailableindexonD.age.ReplacingtheconditionbyE.age2=D.agewouldreversethesituation.Inabilitytorecognizeasophisticatedplansuchasanindex-onlyscanforanaggregationqueryinvolvingaGROUPBYclause.Iftheoptimizerisnotsmartenoughtoandthebestplan(usingaccessmethodsandevaluationstrategiessupportedbytheDBMS),somesystemsallowuserstoguidethechoiceofaplanbyprovidinghintstotheoptimizer;forexample,usersmightbeabletoforcetheuseofaparticularindexorchoosethejoinorderandjoinmethod.AuserwhowishestoguideoptimizationinthismannershouldhaveathoroughunderstandingofbothoptimizationandthecapabilitiesofthegivenDBMS.(8)0THERTOPICSMOBILEDATABASESTheavailabilityofportablecomputersandwirelesscommunicationshascreatedanewbreedofnomadicdatabaseusers.Atoneleveltheseusersaresimplyaccessingadatabasethroughanetwork,whichissimilartodistributedDBMSs.Atanotherlevelthenetworkaswellasdataandusercharacteristicsnowhaveseveralnovelproperties,whichaffectbasicassumptionsinmanycomponentsofaDBMS,includingthequeryengine,transactionmanager,andrecoverymanager.UsersareconnectedthroughawirelesslinkwhosebandwidthistentimeslessthanEthernetand100timeslessthanATMnetworks.CommunicationcostsarethereforesignificantlyhigherinproportiontoI/OandCPUcosts.Users,locationsareconstantlychanging,andmobilecomputershavealimitedbatterylife.Therefore,thetruecommunicationcostsisconnectiontimeandbatteryusageinadditiontobytestransferred,andchangeconstantlydependingonlocation.Dataisfrequentlyreplicatedtominimizethecostofaccessingitfromdifferentlocations.Asausermovesaround,datacouldbeaccessedfrommultipledatabaseserverswithinasingletransaction.Thelikelihoodoflosingconnectionsisalsomuchgreaterthaninatraditionalnetwork.Centralizedtransactionmanagementmaythereforebeimpractical,especiallyifsomedataisresidentatthemobilecomputers.WemayinfacthavetogiveuponAClDtransactionsanddevelopalternativenotionsofconsistencyforuserprograms.MAINMEMORYDATABASESThepriceofmainmemoryisnowlowenoughthatwecanbuyenoughmainmemorytoholdtheentiredatabaseformanyapplications;with64-bitaddressing,modernCPUsalsohaveverylargeaddressspaces.Somecommercialsystemsnowhaveseveralgigabytesofmainmemory.ThisshiftpromptsareexaminationofsomebasicDBMSdesigndecisions,sincediskaccessesnolongerdominateprocessingtimeforamemory-residentdatabase:Mainmemorydoesnotsurvivesystemcrashes,andsowestillhavetoimplementloggingandrecoverytoensuretransactionatomicityanddurability.Logrecordsmustbewrittentostablestorageatcommittime,andthisprocesscouldbecomeabottleneck.Tominimizethisproblem,ratherthancommiteachtransactionasitcompletes,wecancollectcompletedtransactionsandcommittheminbatches;thisiscalledgroupcommit.Recoveryalgorithmscanalsobeoptimizedsincepagesrarelyhavetobewrittenouttomakeroomforotherpages.Theimplementationofin-memoryoperationshastobeoptimizedcarefullysincediskaccessesarenolongerthelimitingfactorforperformance.Anewcriterionmustbeconsideredwhileoptimizingqueries,namelytheamountofspacerequiredtoexecuteaplan.Itisimportanttominimizethespaceoverheadbecauseexceedingavailablephysicalmemorywouldleadtoswappingpagestodisk(throughtheoperatingsystem'svirtualmemorymechanisms),greatlyslowingdownexecution.Page-orienteddatastructuresbecomelessimportant(sincepagesarenolongertheunitofdataretrieval),andclusteringisnotimportant(sincethecostofaccessinganyregionofmainmemoryisuniform).(一)从历史日勺角度回忆从数据库B初期开始,存储和操纵数据就一直是重要的应用焦点。第一种通用的DBMS是由CharlesBechman于20世纪60年代初期在通用电器企业设计0,称为集成数据存储QntegratedDataStOre).它奠定了网状数据模型0基础。网状数据模型由数据系统语言协会(CODASYL)原则化,并在整个20世纪60年代对数据库系统产生了巨大的影响。由于Bachman在数据库领域的奉献,他成为第一种ACM图灵奖(相称于计算机科学界的诺贝尔奖)的

    注意事项

    本文(软件工程专业毕业设计外文文献解析.docx)为本站会员(夺命阿水)主动上传,课桌文档仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知课桌文档(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-1

    经营许可证:宁B2-20210002

    宁公网安备 64010402000986号

    课桌文档
    收起
    展开