欢迎来到课桌文档! | 帮助中心 课桌文档-建筑工程资料库
课桌文档
全部分类
  • 党建之窗>
  • 感悟体会>
  • 百家争鸣>
  • 教育整顿>
  • 文笔提升>
  • 热门分类>
  • 计划总结>
  • 致辞演讲>
  • 在线阅读>
  • ImageVerifierCode 换一换
    首页 课桌文档 > 资源分类 > DOCX文档下载  

    2023-2024学年北师大版选择性必修第一册用空间向量研究夹角问题学案.docx

    • 资源ID:1067352       资源大小:103.87KB        全文页数:10页
    • 资源格式: DOCX        下载积分:5金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要5金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2023-2024学年北师大版选择性必修第一册用空间向量研究夹角问题学案.docx

    2023-2024学年北师大版选择性必修第一册用空间向量研究夹角问题学案学习任务1 .会用向量法求线线、线面、面面夹角.(直观想象、数学运算)2 .能正确区分向量夹角与所求线线角、线面角、面面角的关系.(逻辑推理、数学运算)必备知识情境导学探新知情境我习素养感知【情境与问题:在必修教材的课程中,我们学习过异面直线所成的角、直线与平面相交所成的角以及两个平面相交所成的二面角.那么,在空间中怎样描述这些角呢?这些角的大小与直线的方向向量、平面的法向量有何关系?知识点1利用向量方法求两条异面直线所成的角若异面直线4,A所成的角为8,其方向向量分别是,%则COS。=ICOS(11,V)I=IUVI_uvI丽厂丽.知识点2利用向量方法求直线与平面所成的角直线川?与平面。相交于点反设直线力与平面所成的角为8,直线力力的方向向量为,平面的法向量为,则Sin6=;CoS(,n)I=711=ul11l尼由Ft思考1.设直线与平面所成的角为J直线的方向向量为用平面的法向量为,则。与有什么关系?提示:O=B-3,ri)或O=(f,n)p知识点3利用向量方法求两个平面的夹角(1)平面。与平面的夹角:平面。与平面相交,形成四个二面角,我们把这四个二面角中不大于90。的二面角称为平面a与平面的夹角.(2)若平面。,的法向量分别是必和n,则平面a与平面的夹角即为向量融和瓜的夹角或其补角,设平面。与平面方的夹角为则CoSJ=ICoS<1,I=IF岩I=In1n2lnr112lwill«zl思考2.(D二面角与平面的夹角范围一样吗?(2)设血,,分别是平面l,。2的一个法向量,平面与平面。2的夹角为。,则。与(,n:)的关系是什么?提示:(1)不一样.二面角的范围为0,11,而两个平面的夹角是不大于直角的角,范围是(2) 0=<1,n>)或=-<,ik).。课前自主体验1 .设两条异面直线外。的方向向量分别为&=(1,1,0),b=(0,1,1),则a与6所成的角为.f设直线与6所成的角为。,则COSJ=揣=舄=%又,£(0,耳,故2 .设直线a的方向向量为&=(-1,2,1),平面。的法向量为b=(0,1,2),则直线a与平面。所成角的正弦值为.甯由题意设直线a与平面。所成的角为,则Sin=黑=盂,=甯.15Ialibl6×v5153 .平面a的法向量为(1,0,-1),平面的法向量为(0,-1,1),则平面。与平面的夹角为.y设U=(1,0,1),V=(0,1,1),a与的夹角为8,则COSO=ICOS<l,V)=p关键能力合作探究释疑难疑难问题集惠学科素券形成类型1两条异面直线所成的角【例1】(源自北师大版教材)如图所示,在空间直角坐标系中有长方体B1CD,AB=2,BC=,AA,=3.求V与4。所成角的余弦值.解设s,搅分别是和"的一个方向向量,取S=AC',si=A'D.因为4(0,0,0)"(2,1,3),A,(0,0,3),(0,1,0),所以S=4C'=(2,1,3),s>=A/D=(0,1,3).设力C'与4所成角为B,则CoS"=cos回,SiiI=|卢含=WpIs1s2l14O35故力C'与H所成角的余弦值为tp.反思领悟求异面直线所成角的步骤(1)确定两条异面直线的方向向量.(2)确定两个向量夹角的余弦值的绝对值.(3)得出两条异面直线所成的角.跟进训练1.如图,在三棱柱。!比Q45中,平面鹤。,平面勿以NQOB=60:AOB=90°,且OB=Oa=2,a=5,求异面直线48与月。所成角的余弦值.解以0为坐标原点,OA,而的方向为X轴,y轴的正方向.建立如图所示的空间直角坐标系,则0(0,0,0),。(0,1,3),J(3,0,0),Ay(3,1,3),8(0,2,0),*.A1B=(-V3,1,3),O1A=(V3,1>3).cos(碎硒I=瑞鬻_|(一技,一I)(技_1,_何_17×71'异面直线48与力”所成角的余弦值为今Il类型2直线与平面所成的角【例2】(2022全国甲卷)在四棱锥PABCD中,外,底面ABCD,CD"AB,AD=DC=CB=I,8=2,DP=W.(D证明:BDLPA;(2)求勿与平面为8所成的角的正弦值.思路导引北黑眠2一四边形力腼为等腰梯形一嚣;第一犯平面PADBDLPA.(2)由(1)建系一相关点坐标一而,PA,而一平面为8的法向量一如与平面为8所成角的正弦值.解(D证明:在四边形力空9中,因为力8微AD=DC=CB=LAB=2,所以四边形力吸力是等腰梯形,易得切=心,且A)+B户=AM所以ADLBD,又因为W_L底面/1阅9,B上底面ABCD,所以PDLBD.因为做/IZt平面总,PDCAD=D,所以加_L平面PAD,又因为为U平面用,所以加阳.(2)由(1)可知,DA.DB,分两两互相垂直,以为坐标原点,DA,DB,分所在直线分别为筋y,Z轴,建立如图空间直角坐标系“xyz,则(0,0,0),4(1,0,0),6(0,3,0),P(0,0,3),所以丽=(0,0,-3),P4=(l,O,-3),丽=(0,3,-3),设平面为8的法向量为A=(筋y,力,则上目=。,即pvo八,5PB=Ol3y-3z=O令y=l,则z=l,x=3,故可取a=(5,1,1),设直线如与平面用8所成角为,则Sin'=Icos<,PD=y.所以与平面为8所成的角的正弦值为日.反思领悟利用法向量求直线与平面所成角的基本步骤(1)建立空间直角坐标系;(2)求直线的方向向量而;求平面的法向量m计算:设线面角为",则Sin。=幅.跟进训练2.(2020全国11卷)如图,已知三棱柱力吐的底面是正三角形,侧面即GC是矩形,M十分别为比;台G的中点,P为AM上一点、,过笈G和的平面交力6于£,交AC于E证明:AA”那,且平面平面用GT7;设。为448G的中心.若/。平面第G凡且4O=M,求直线8g与平面44网所成角的正弦值.解证明:因为MN分心为BC,HG的中点,所以秘VCG.又由已知得制,故就因为4台G是正三角形,所以台G_L4N又BXCaMN,AWeMN=M故台G_L平面4/加所以平面44的CL平面EBxCxF.(2)由已知得力ML80.以"为坐标原点,为5的方向为彳轴正方向,I而I为单位长,建立如图所示的空间直角坐标系Mxyzt则46=2,JJ=3.连接,陀,则四边形力QW为平行四边形,故小手鳄,”).:MNLBaAMLBC,MNCAM=M,8CL平面AxAMN.又V庆七平面ABC,且平面44吩VG平面ABC=AM,平面44网LL平面ABC,在平面44胧内作AQL4%垂足为0,则A0_L平面ABC.设0(4,0,0),则.图=j4-(等一ay,又A=(0,1,0)是平面44J你的一个法向量,故Sin(y-<n,O>)=cosSO)=所以直线台£与平面44邠所成角的正弦值为噜.类型3两个平面的夹角例3(2022新高考I卷)如图,直三棱柱加e45G的体积为4,加%的面积为22.(1)求力到平面4%的距离;设为4C的中点,AA尸AB,平面平面川阳4,求二面角力-防C的正弦值.思路导引直三棱柱AB。AIBC的体积为4一三棱锥A-MC的体积一点A到平面4%的距离.建系题设条件BA,BC,酌两两垂直一J平面力被与平面取的法向量向量夹角的余弦公式FMmC-FKcfM"4E如十4M人才/十同角三角函数的基本关系_>平面4勿与平面颂的法向量的夹角的余弦值>二面角力-如C的正弦值.解设点A到平面48。的距离为/?,因为直三棱柱力修484的体积为4,所以Kh8C=2以欣X胡1=3vABC-A1BxClf又4隙的面积为2KiTlBC=gs“iBC力三X2方=g,所以力=V,即点力到平面4a1的距离为V.(2)取45的中点£连接力£,则的L45,因为平面48UL平面力做M,平面4a'平面力防4=46,力比平面力阳4,所以4KL平面48C,所以力AL比;又力力平面ABC,所以加闱因为44Q4所以比人平面/仍M,所以BC工AB.以6为坐标原点,分别以瓦,BA,西的方向为必y,Z轴的正方向,建立如图所示的空间直角坐标系Bxyzi由(1)知,AE=y2,所以月4=4=2,=22,因为儿比的面积为2,所以2&l=2XABXBC,所以比'=2,所以1(0,2,0),8(0,0,0),6,(2,0,0),4(0,2,2),i9(l,1,1),MO,1,1),则丽=(1,1,1),BA=(0,2,0),设平面板的法向量为A=(筋尸,z),则.吧=(L即产y+z=。,nBA=0,12y=0,令*=L得=(1,0,1),又平面加。的一个法向量为荏=(0,-1,1),所以CoS(AE,n:=裔Ei=T=%设二面角止切C的平面角为8,则Sin8=Jl-COS2(AE,n)=M所以二面角止既C的正弦值为当反思领悟求两平面夹角的两种方法(1)定义法:在两个平面内分别找出与两平面交线垂直的直线,这两条直线的夹角即为两平面的夹角.也可转化为求与两平面交线垂直的直线的方向向量的夹角,但要注意其异同.(2)法向量法:分别求出两平面的法向量必,,,则两平面的夹角为m,血(当加1,n2>e,当时)或4一S,zfe>(当<n1,Zl2(,.时).跟进训练3.(2021全国乙卷改编)如图,四棱锥84¾力的底面是矩形,PDL底面ABCD,PD=DC=I,M为比的中点,且PBuM求始(2)求平面加出与平面明夹角的正弦值.解(D因为用"L平面力时,所以PDLAD,PDVDC.P在矩形力筋中,ADIDC,故以点为坐标原点建立空间直角坐标系如图所示.设BC=t,则4(30,0),B(t,1,0),岭,1,0),P(0,0,1),所以丽=(£,1,-1),前二(一,1,0).因为加所以而宿=-g+l=0,得t=所以BC=V.易知C(0,1,0),由可得而=(一或,0,1),加=(一当,1,0),S=(2,0,0),PF=(2,1,-1).设平面在V的法向量为Ai=(由,/1,Zi),则色=(E即+ZL”(n1AM=0,-×+%=0,令m=,则z=2,M=L所以平面4的一个法向量为n=(1,2).设平面A步的法向量为四=(如角,z2),则(112'CB0,j(>/22=0,In2方=0,I2x2+y2-Z2=0,得入2=0,令角=1,则z2=l,所以平面月监的一个法向量为n=(0,1,1)./11,11233V14COS6,>=,.=-r=-三=-yn1n27x214所以平面/山"与平面制步夹角的正弦值为等.一学习效果课堂评估夯基础k课堂知识检测小结问愚点评1 .己知向量。,A分别是直线/与平面a的方向向量、法向量,若COS9,加=-y,则/与。所成的角为()A.30°B.60oC.150oD.120°B设/与的夹角为8,则SinO=Icosn)I=与,J=60°,应选B.2 .如图,在直三棱柱力分4由G中,ZACB=90o,41=2,AC=BC=I,则异面直线48与/1。所成角的余弦值是()D以C为坐标原点,CA,CB,CG所在直线分别为X轴、y轴、Z轴建立如图所示的空间直角坐标系,可知4(1,0,2),8(0,1,0),J(l,0,0),C(0,0,0),则诵=(一1,1,-2),4C=(-1,0,0),.*.cos(不瓦AC)=窝'嘘=即4历与4C所成角的余弦值是£IACHAl叫l+l+4663 .在一个锐二面角的两个半平面内,与二面角的棱垂直的两个向量分别为(0,-1,3),(2,2,4),则这个锐二面角的两个半平面的夹角的余弦值为()15T15A由(,工獴:6')=瑞=缘知这个锐二面角的两个半平面的夹角的余弦值为4.如图所示,点力,B,C分别在空间直角坐标系公彩的三条坐标轴上,OC=(0,0,2),平面力比的一个法向量为=(2,1,2),平面力仇?与平面力80的夹角为0,IjllJcos0=I圜昌加囹卜回顾本节知识,自主完成以下问题:1 .用向量语言表述两条异面宜线所成的角.提示:若异面直线人/2所成的角为夕,其方向向量分别为,P,则CoS0=COS(,力I=史世uv2 .用向量语言表述直线和平面所成的角.提示:直线/和平面。所成的角为8,直线/的方向向量为,平面的法向量为Z2,则sin9=ICOS,n>=7711.un3 .用向量语言表述平面和平面的夹角.提示:平面。与平面f的夹角为0,其法向量分别为】,,则CoS夕=ICOS<,>Il11r112InIIIn24 .试总结用坐标法求两平面的夹角的步骤.提示:(D建立空间直角坐标系,求出相应点的坐标.(2)求出两个平面的法向量.(3)求出两个法向量的夹角.(4)两个法向量的夹角或其补角就是两平面的夹角.

    注意事项

    本文(2023-2024学年北师大版选择性必修第一册用空间向量研究夹角问题学案.docx)为本站会员(夺命阿水)主动上传,课桌文档仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知课桌文档(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-1

    经营许可证:宁B2-20210002

    宁公网安备 64010402000986号

    课桌文档
    收起
    展开