IRENA-制氢用水(英)-2023_市场营销策划_重点报告202301202_doc.docx
IntemotionolRenewable''j.,->.燹IRENAWaterforhydrogen2productionO©IRENA2023Unlessotherwisestated,materialintispublicationmaybefreelyused,shared,pied,reproduced,printedand/orstored,providedthatappropriateacknowledgementisgivenofIRENAasthesourceandcopyrightholder.Materialinthispublicationthatisattributedtothirdpartiesmaybesubjecttoseparatetermsofuseandrestrictions,andappropriatepermissionsfromthesethirdpartiesmayneedtobesecuredbeforeanyuseofsuchmaterial.ISBN:978-92-9260-526-1citation:IRENAandBluerisk(2023),Waterforhydrogenproduction,InternationalRenewableEnergyAgency,Bluerisk,AbuDhabi,UnitedArabEmirates.ABOUTIRENATheInternationalRenewableEnergyAgency(IRENA)isanintergovernmentalorganisationthatsupportscountriesintheirtransitiontoasustainableenergyfutureandservesastheprincipalplatformforinternationalco-operation,acentreofexcellence,andarepositoryofpolicy,technology,resourceandfinancialknowledgeonrenewableenergy.IRENApromotesthewidespreadadoptionandsustainableuseofallformsofrenewableenergy,includingbioenergyzgeothermal,hydropower,ocean,solarandwindenergy,inthepursuitofsustainabledevelopment,energyaccess,energysecurityandlow-carboneconomicgrowthandprosperity.www.irena.orgABOUTBLUERISKBlueriskisawaterstrategyanddataanalyticsconsultancyfocusedonenhancingresilienceandreducingriskinthefaceofemergingwaterchallenges.BluerkkACKNOWLEDGEMENTSThereportwasdevelopedundertheguidanceofUteCollieracting-Director,IRENAKnowledgePolicyandFinanceCentreandauthoredbyEmanueleBianco(IRENA),TianyiLuo(Bluerisk),andDivyamNagpal(ex-IRENA).IRENAcolleaguesAnn-KatbrinLipponer,LuisJaneiroandFranciscoBoshellprovidedvaluableinput.AnetaCornell(EcoIab),LorenzoRosa(StanfordUniversity),ChaoZhangandYinshuangXia(TongjiUniversity),providedtechnicalcontributionstothereport.MarinaMelnikovaandYuryMelnikov(Mytonastars)providedusefulcontributionsandobservations.Thereportbenefitedfromthereviewsandcommentsofexperts,includingAlistairWyness,RachaelRaid(BP)zNitinBassi(CEEW),YuZhang,ZiyanSha(ChinaHydrogenEnergyIndustryPromotionAssociation),CristianCarraretto,RobertoGonzales(EBRD),AnetaCornell,EmilioTenuta(EcoIab),MassimoSantarelli(PolytechnicUniversityofTurin),AlejandroLongueira(RolandBerger)andSmeetaFokeer(UNIDO).PublicationsupportwasprovidedbyFrancisFieldandStephanieClarke(IRENA).ThereportwaseditedbyFayreMakeig,withdesignprovidedbyElkanodata.Forfurtherinformationortoprovidefeedback:publicationsirena.orgDISCLAIMERThispublicationandthematerialhereinareprovideduasisw.AllreasonableprecautionshavebeentakenbyIRENAtoverifythereliabilityofthematerialinthispublication.However,neitherIRENAnoranyofitsofficials,agents,dataorotherthird-partycontentprovidersprovidesawarrantyofanykind,eitherexpressedorimplied,andtheyacceptnoresponsibilityorliabilityforanynsequenceofuseofthepublicationormaterialherein.TheinformationcontainedhereindoesnotnecessarilyrepresenttheviewsofallMembersofIRENA.ThementionofspecificcompaniesorcertainprojectsorproductsdoesnotimplythattheyareendorsedorrecommendedbyIRENAinpreferencetoothersofasimilarnaturethatarenotmentioned.ThedesignationsemployedandtepresentationofmaterialhereindonotimplytheexpressionofanyopiniononthepartofIRENAconcerningthelegalstatusofanyregion,country,territory,cityorareaorofitsauthorities,orncerningthedelimitationoffrontiersorboundaries.TableofcontentsGlossary5Executivesummary6Chapter 1Introductiontothehydrogen-waternexus14Chapter 2Areviewofwaterquantityrequirementsincommercial-scalehydrogenproduction21Chapter 3Waterfootprintandrisksofglobalhydrogenproduction32Chapter 4Deep-diveanalysesofnorthernChina,theGulfandEurope42Chapter 5ConclusionsandRecommendations54References59Appendix63FiguresFigureSlAcomparisonofaveragewaterwithdrawalandconsumptionintensitiesbyhydrogenproductiontechnologyFigureS2Currentandprojectedfreshwaterwithdrawalforglobalhydrogenproduction,bypathwayFigure2.1Schematicsofprocess-specificwaterwithdrawalandnsumptioninlitresfortypicalhydrogentechnologiestogenerate1kilogrammeofhydrogenFigure2.2ShareofthewaterwithdrawalneedsofproductionandcoolingintheoverallwaterdemandofhydrogenproductionexamplesFigure2.3AcomparisonofaveragewaterwithdrawalandconsumptionintensitiesbyhydrogenproductiontechnologyFigure2.4RelationsbetweenhydrogenconversionefficiencyandwaterwithdrawalandconsumptionintensitiesofatypicalelectrolysisprojectFigure2.5Annualwaterwithdrawaloftypicalhydrogenproductionprojects,thermalpowerplantsandmunicipalitiesFigure3.1Currentandprojectedfutureglobalhydrogenproductionunderthe1.50CScenarioFigure3.2Currentandprojectedfreshwaterwithdrawalforglobalhydrogenproduction,bypathwayFigure 3.3Figure 3.4Freshwaterforhydrogenproductionandclingztodayto2050Globalwaterstressconditionsandgreenandbluehydrogenprojectlocationsfor2040Figure3.5Distributionofglobaloperationalandplannedgreenandbluehydrogenproductioncapacitiesbywaterstresslevel,todayandin2040Figure3.6Distributionofglobaloperationalandplannedgreenandbluehydrogenproductioncapacitiesbywaterstresslevelandregionin2040Figure4.1Hydrogen-producingcoalchemicalplantsandlevelsofwaterstressintheYellowRiverBasinFigure4.2Annualwaterwithdrawalandconsumptionduetocoal-basedhydrogenproductionintheYellowRiverBasin,byprovinceFigure4.3Distributionofhydrogen-producingcoalchemicalplantsintheYellowRiverBasinbycurrentwaterstresslevel44Figure4.4Annualwaterwithdrawalandnsumptionrequirementsofcoal-basedhydrogenproductionintheYellowRiverBasinunderfourscenarios45Figure4.5HydrogenplantsintheGulfCooperationCounciluntriesandtheregion,scurrentwaterstressconditions46Figure4.6CurrentandprojectedfuturehydrogenproductionoftheGulfCperationCouncilcountries47Figure4.7CurrentandprojectedseawaterwithdrawalsanddesalinatedseawaterrequirementsofhydrogenproductionintheGulfCperationCouncilcountries48Figure4.8AnoverviewofhydrogenprojectsinEurope49Figure4.9AmapofwaterstressandoperationalandplannedhydrogenprojectsbyproductiontechnologyinEurope50Figure4.10ThedistributionofEurope'soperationalandplannedhydrogenprojectsbywaterstresslevelsin204051Figure4.11CurrentandprojectedhydrogenproductioninEurope52Figure4.12CurrentandprojectedfuturefreshwaterwithdrawalandconsumptionrequirementsofhydrogenproductioninEurope53TablesTable2.1Asummaryofwaterwithdrawalandconsumptionintensitiesbyhydrogenproductiontechnology29Table3.1Currentandprojectedfreshwaterwithdrawalandconsumptionforhydrogenproduction(billioncubicmetres),todayto205037TableAlWaterwithdrawalandconsumptionintensitydatasources63BoxesBox3.1HydrogenintheWorldEnergyTransitionsOutlook32Box3.2Whatiswaterstress?39AbbreviationsAEMATRCCSanionexchangemembraneauto-thermalreformingcarboncaptureandstorageCCUScarboncapture,utilisationandstorageGCCGulfCperationCouncilGHGgreenhousegasesH2PEMhydrogenprotonexchangemembranePVSDGSMRSOECphotovoltaicSustainableDevelopmentGoalssteammethanereformingsolidoxideelectrolysercellsUnitsofmeasureGWkggigawattkilogramktkilotonneLm3litrecubicmetreMtmegatonneGlossaryBlowdownwater:Waterdrainedintentionallyfromcoolingsystemstopreventmineralbuild-up.Cycleofconcentration:Ameasureofthebuild-upOfdissolvedmineralsinclingsystems.Thecycleiscalculatedbycomparingtheconcentrationofaparticulardissolvedsolidinthewatercomingoutofacoolingsystemtoitsconcentrationinthewaterflowingintothesystem.Deionisedwater:Atypeofhighlypurifiedwaterthatdoesnotcontainanyatoms,ionsormolecules.Deionisationremovesdissolvedsubstanceslikesodiumchloride,minerals,carbondioxide,organicpollutantsandvariousothercontaminantsfromwater.Makeupwater:Thewateraddedbackintoacoolingsystemtoreplacewaterlostduetoevaporation,leaks,etc.Permeaterate:Inmembrane-basedwatertreatmentsystems,theratioofthevolumeofwaterpassingthroughthemembranetothetotalquantityofrawwater.Waterwithdrawal:Measuredbythequantityofwaterwithdrawnfromasource(e.g.river,Iakezgroundwater)foruse.Waterwithdrawal/consumptionintensity:Thequantityofwaterwithdrawnfororconsumedinthegenerationofaunitofaproduct(e.g.amegawatthourofenergy,amegatonneofhydrogen).Waterconsumption:Theportionofwithdrawnwaterthatisnotreturnedtothesource.Waterstress:Measuredusingtheratioofthetotalwaterwithdrawaltotheavailablerenewablefreshwatersupply.Itshouldbecalculatedatawatershedscale.Waterstressposessignificantriskstohumanandenvironmentalwell-beingandisaproxyforwatercompetitionamongsectorsanduses.ExecutivesummaryTheenergysectoristhelargestwateruserofallindustrialsectors.Waterisrequiredinmanyofitsprocesses,fromfuelextractiontoelectricitygeneration.AsseenintherecentnuclearpowerplantshutdownsinEuropein2022zwatershortagescansignificantlydisruptthesector.Andthedisruptionsarelikelytocontinueandtobecomeevenmorefrequent,especiallyasextremeweathereventsintensifyamidachangingclimate.Toaddresstherisingclimaterisks,theenergysectorisalreadyestablishinggoodpracticesforintegratingwaterconsiderationsintoplanning.Thesectorcanmitigateitswaterrisksbytransitioningtorenewableenergysources,whichconsumelesswaterthantraditionalfossilfuels.Cleanhydrogenhasemergedasaviablealternativeinthefightagainstclimatechange.Hydrogenisagamechanger,especiallyfor''hardtoabate”,suchassteelmaking,chemicalproduction,aviationzshippingandtrucktransport.Assessingthewateruseimplicationsofhydrogenproduction,especiallyinwater-stressedareas,isessentialinmanagingpotentialdisruptionstoproduction.Allhydrogenproductiontechnologiesrequirewaterasaninput.Waterisneedednotonlyinproductionbutalsoforcooling.Thewithdrawalandconsumptionofwaterforcleanhydrogenproductionhavebeendebated,yettoooftenthediscussionsarenotinformedbyin-depthknowledgeofthesestill-nascenttechnologies.Thisreport,mpiledbytheInternationalRenewableEnergyAgency(IRENA)andBlueriskzseekstoanswersomeofthesequestions.Howmuchwaterdoesahydrogenplantactuallyconsume?Thisreportreviewsthewaterwithdrawalandconsumptionrequirementsofvarioushydrogenproductiontechnologiesindetail.Datahavebeensourcedfrominterviewswithindustryexpertsandareviewofexistingliterature,sheddinglightonthewaterimplicationsofscalingupcleanhydrogenproduction.AveragewaterwithdrawalandconsumptionintensityandrangesarevisualisedinFigureSI.Greenhydrogenisthemostwaterefficientofallcleanhydrogentypes.Itisfoundthat011average,protonexchangemembrane(PEM)electrolysishasthelowestwaterconsumptionintensityatabout17.5litresperkilogrammeofhydrogen(Lkg).AlkalineelectrolysisfollowsPEMelectrolysis,withawaternsumptionintensityof22.3Lkg.Thesemaybecomparedwithsteammethanereforming-carboncapture,utilisationandstorage(SMR-CCUS)zat32.2Lkgzandautothermalreforming(ATR)-CCUSat24.2Lkg.figureSiAcomparisonofaveragewaterwithdrawalandconsumptionintensitiesbyhydrogenproductiontechnologyWithdrawalConsumptionNote:Tapwater(orsourceswithsimilarwaterquality)is(are)usedorassumedtobetewatersource(s)behindthesedatapoints.Forbluehydrogen,thecoolingrequirementsforCCUSsystemsareincluded.ForPEMandATR,availabledatapointsarelimitedsincethesetechnologiesarerelativelynew-thusthemuchsmallerrangesofvalues.ATR=autothermalreforming;CCUS=carboncapture,utilisationandstorage;kg=kilogramme;L=litre;PEM=protonexchangemembrane;SMR=steammethanereforming.Coalgasificationisbyfarthemostwaterintensiveofavailabletechnologies;itwouldbeabout60%moreintensiveifequippedwithCCUS.Coalgasificationhasawaterwithdrawalrequirementofabout50L/kgandconsumes31Lkgzonaverage-roughlytwicePEM,swaterwithdrawalandconsumptionrequirements.EquippedwithCCUSzcoalgasification'swithdrawalaswellasconsumptionrequirementscouldfurtherincreaseto80.2and49.4Lkgzrespectively.Acoalgasificationhydrogenplantproducing237kilotonnes(kt)ofhydrogenperyearandequippedwithCCUSwouldwithdrawabout19millioncubicmetres(m3)ofwaterannually;thisvolumeofwatercouldsupporthalfthewaterdemandofthecityofLondonforanentireyear.Waterisrequiredasaninputforproductionandasacoolingmediumforalltypesofhydrogenproduction.Dependingonthetechnology,theshareofwithdrawalforcoolingcanrangefrom14%to92%.Theshareofwaterwithdrawalforcoolingisthelowestforgreyhydrogenproduction,atabout14%.Greenandbrownhydrogen'ssharesare56%and52%zrespectively.BluehydrogenproductionrequiresmorewaterforclingzduetothesignificantwaterrequirementsofCCUSsystemsforheattransfer.Coolingcanaccountforupto92%ofthetotalwithdrawalrequirementofbluehydrogen,accordingtodatafromtheNationalEnergyTechnologyLaboratoryintheUnitedStates.However,moreevidenceisneededbeforeageneralproduction-clingratiocanbedeterminedwithoutdispute.Forevery1percentagepointincreaseinelectrolysisefficiency,thewaterwithdrawalaswellasconsumptionrequirementsofgreenhydrogenproductionlessenbyabout2%.Thisisprimarilybecause,forthesametypeofhydrogenproductiontechnology,themoreenergyefficientthesystemiszthelesswasteheatneedstobetransferred;thismeanslesswaterisrequiredforcling.Whatwillbetheglobalimpactofcleanhydrogen?Thisreportpresentsacomprehensiveanalysisofthewaterftprintandrisksassociatedwithcurrentandprojectedfutureglobalhydrogenproduction.TheanalysisisbasedonIRENAzs1.5Scenario,whichprojectssubstantialgrowthinhydrogenproductionby2050.Today,about2.2billionm3offreshwateriswithdrawnforglobalhydrogenproductioneveryyear;thisaccountsfor0.6%oftheenergysector'stotalfreshwaterwithdrawal.AsillustratedinFigureS2zgreyhydrogenproductionaccountsforabout59%oftheglobalfreshwaterwithdrawalforhydrogenproduction,brownhydrogen40%,andtherestisfromgreenandbluehydrogen.Freshwaterwithdrawalsforglobalhydrogenproductioncouldmorethantripleby2040andincreasesix-foldby2050zcomparedwithtoday.Drivenbythesignificantexpansionofglobaldemandforhydrogen,thetotalfreshwaterwithdrawalrequiredbyglobalhydrogenproductionisprojectedtobeabout7.3billionm3by2040and12.1billionm3by2050zfactoringintechnologyadvancements.Hydrogenproduction'sshareoftotalfreshwaterwithdrawnfortheenergysectorcouldrisefrom0.6%todayto2.4%by2040.figureS2Currentandprojectedfreshwaterwithdrawalforglobalhydrogenproduction,bypathway14(E uoq)QMep£ M 拈MqsalJ-BnUu<0.9Current20402050BrownH2GreyH2BlueH2GreenH2Note:Tapwater(orwatersourceswithsimilarwaterquality)is(are)assumedtobethewatersource(s).Projecteddesalinatk>n-basedandseawater-cledhydrogenproduction(e.intheGCCcountries)isexduded.BlueH2includesSMR-CCUS,ATR-CCUSandcoal-CCUS,withtheshareOfATR-CCUSassumedtograduallyineaseto75%by2050.COoIinginblueH2productionindudestheclingdemandduetoCCUSsystems.GreenH2indudesbothalkalineandPEMelectrolysiswiththeshareofPEMelectrolysisassumedtograduallyineaseto75%by2050.Moderategradualincreasesinelectrolysisefficiency(7.5percentagepointsforalkalineelectrolysisand4.5percentagepointsforPEM-electrolysisoverthemingthreedecades)areassumed.Forcalculationpurposes,theclingandproductionsharesofblueH2inCase2fromLewisetal.(2022)areapplied.ATR=autothermalreforming;CCUS=carboncapture,utilisationands