欢迎来到课桌文档! | 帮助中心 课桌文档-建筑工程资料库
课桌文档
全部分类
  • 党建之窗>
  • 感悟体会>
  • 百家争鸣>
  • 教育整顿>
  • 文笔提升>
  • 热门分类>
  • 计划总结>
  • 致辞演讲>
  • 在线阅读>
  • ImageVerifierCode 换一换
    首页 课桌文档 > 资源分类 > DOCX文档下载  

    专题3.1坐标系中的面积问题与规律问题专项训练(解析版).docx

    • 资源ID:1076255       资源大小:980.82KB        全文页数:59页
    • 资源格式: DOCX        下载积分:5金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要5金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    专题3.1坐标系中的面积问题与规律问题专项训练(解析版).docx

    专题3.1坐标系中的面积问题与规律问题专项训练本专题训练卷共60题,其中:平面直角坐标系的面积问题25题,平面直角坐标系的规律问题35题;题型针对性较强,覆盖面广,选题有深度,包含了平面直角坐标系中的规律问题和面积问题全部类型。'知坐标,求面积问题L平面直角坐标系的面积:J知面积,求坐标(方程思想)、分类讨论(1)知坐标,求面积解题技巧:已知组成不规则图形端点的坐标,求面积问题,常用方法为:“割补法”。原则是通过割补,不规则图形或则边长不好表示的图形成容易根据点的坐标求解出边长的图形,然后在求解图形面积。不规则多边形:过不规则图形的顶点作坐标轴的垂线与平行线,将不规则图形“补形”成一个大的矩形;然后用大的矩形面积减去多余部分图形(多位直角三角形)面积。三角形:三角形用“补形法”也可以进行,但相对比较麻烦,三角形常用方法为“切割法”。过三角形的顶点作坐标轴的垂线,将三角形切割成易于根据点的坐标求解边长的规则图形。(2)知面积,求坐标(方程思想)解题技巧:我们可以利用方程的思想,设未知点的坐标为未知数,然后再根据点的坐标,确定线段的长度,进而根据图形面积列方程,求解出未知数即可。方程思想是比较常见的一类数学思想,引入未知数,可将图形问题转化方程求解的问题。(3)分类讨论解题技巧:此类题型仅不知图形的一个顶点,且已知面积,求这个顶点。这个顶点位置不固定,存在多解情况,需考虑全面。点在坐标轴上:先确定三角形的底,根据面积,确定三角形高的长度。在根据底的长度或高的长度来确定未知点的位置。点在格点上:已知三角形的面积,根据条件,先确定三角形的底;然后根据面积,确定高;最后根据高的大小,确定未知点的位置(多解)。1. (2022春龙泉驿区期末)如图,在平面直角坐标系中,将折线AEB向右平移得到折线CTT则折线4所在平移过程中扫过的面积是()A. 15B. 20C. 24D. 25【分析】折线4仍在平移过程中扫过的面积=SaAa针Sq8勿£,再根据平行四边形的面积公式求解即可.【解答】解:折线AEB在平移过程中扫过的面积=SaAaE+528e=5×3+5×2=15+10=25,故选:D.2. (2022市中区二模)平面直角坐标系中,P(X,y)的横坐标与纵坐标的绝对值之和叫做P(x,y)的勾股值,记为PJ,即P=M+M.若点8在第一象限且满足3=4,则满足条件的所有8点与坐标轴围成的图形的面积为()A.2B.4C.6D.8【分析】由勾股值的定义可得方程x+y=4G>0,y>0),变形得y=-x+4,求出此函数与坐标轴的交点坐标即可求面积.【解答】解:设点P坐标为(x,y),由点B在第一象限且满足8=4,;x+y=4(x>0,y>0).即y=-+4,.y=-+4与.r轴交点为(4,0),与y轴交点为(0,4),满足条件的所有B点与坐标轴围成的图形的而枳为!4x4=8.故选:D.23. (2022春汇川区期末)如图,点A、B的坐标分别为(5,6)、(3,2),则三角形A8O的面积为()A.12B.14C.16D.18【分析】作ACLLX轴、8。Lr轴,根据A、8坐标得出A。、8£>及。的长,根据S梯形AMLSNOC-S曲。可得答案.【解答】解:如图,作ACLLr轴于点C,作8£>J_x轴于点。,V(-5,6)、B(3,2),:.AC=6.OC=5,BD=2、0D=3t则Co=OC+0Q=8,*Saob=SNABDCSaocSbocF×(2+6)×8-×5×6-×2×3=3215-3=14»故选:B.2224. (2022春嘉祥县期末)若4ABC三个顶点的坐标分别为A(-3,-1),B(2,-1),C(1,3),则4A8C的面积为()A.7.5B.10C.15D.20【分析】构造平面直角坐标系,标出点4、B、C在坐标系中的位置,过点C向AB作垂线,垂足为Q,根据殷女48Xa),即可得到答案.2【解答】解:过点C向48作垂线,垂足为。,如下图所示:Sabc-×AB×CD=1×5×4=10,故选:B.225. (2022春金乡县期末)在平面直角坐标系中,对于任意三点A,B,C的“矩面积”,给出如下定义:“水平底”:任意两点横坐标差的最大值,“铅垂高”小任意两点纵坐标差的最大值,则“矩面积"S=H?.例如,三点坐标分别为4(0,3),8(-3,4),C(l,-2),则“水平底”=4,“铅垂高”力=6,“矩面积”S=ah=24.若£>(2,2),E(-2,-I),F(3,加)三点的“矩面积”为20,则加的值为.【分析】根据矩面积的定义表示出水平底”和铅垂高“儿利用分类讨论对其铅垂高“人进行讨论,从而列出关于,的方程,解出方程即可求解.【解答】解:VD(2,2),E(-2,-1),F(3,m)“水平底”。=3-(-2)=5”铅垂高”力=3或|1+刑或2-m当力=3时,三点的“矩面积"S=5X3=15W20,不合题意:当=11+利时,三点的“矩面积"S=5X1+刚=20,解得:加=3或m=-5(舍去);当人=|2-利时,三点的“矩面积"S=5X2-词=20,解得:,"=-2或根=6(舍去);综上:加=3或-2故答案为:3或-26. (2022山东日照市七年级期末)如图,在平面直角坐标系Xo),中,AABC的三个顶点的坐标分别是A(-3,0),B(-6,-2),C(-2,-5).将AABC向上平移4个单位长度,再向右平移5个单位长度,得到48/C/.(1)直接写出点8/的坐标;(2)在平面直角坐标系M中画出A/8/C/;(3)若X轴上有一点P,且AABP的面积与AHBC的面积相等,求P点的坐标.【答案】耳(-1,2);(2)作图见解析;(3)P(5.5,0)或P(l.5,0);【分析】(1)根据题意,结合点的平移即可得到4(7,2);(2)根据点的平移,分别得到A、岗、G的坐标,在平面直角坐标系中标出A、与、C1,连接即可得到AB1Ci(3)利用平移不改变图形形状与大小可知Smg=Swc,再结合A8C的面积是矩形面积减去三个直角三角形面积,间接表示即可得出结果.(1)解:AABC的顶点5的坐标分别是8(6,2),当将AABC向上平移4个单位长度,再向右平移5个单位长度,得到时,4(-6+5,-2+4),即l(-l,2);(2)解:AABC的三个顶点的坐标分别是A(3,0),B(-6,-2),C(-2,-5),根据点的平移得到,将48C向上平移4个单位长度,再向右平移5个单位长度,得到AA8(,从而A(2,4),4(T2),C1(3,-1),在平面直角坐标系中标出A、e、G并连接可得448/0,如图所示:(3)解:设点P(Xo,0),则%=k+3,Sg8c=45-g(23+34+l5)=?=8.5,且AB尸的面积与A8C的面积相等,>=×2×+3=85,'所5.5或所-11.5,P(5.5,0)或尸(-11.5,0),【点睛】本题考查平移变换,涉及到点的平移求坐标、利用平移作图、网格中三角形面积求解等知识点,熟练掌握平移的性质是解决问题的关键.7. (2022江苏无锡八年级期中)在平面直角坐标系中,已知线段A8.其中A(1,一3),B(3,0).平移(2)若点。在),轴的正半轴上,点O在第三象限且四边形ABCo的面积为14,求点C的坐标.【答案】(I)(Tl)(2)C(04【分析】(1)点B(3,0)向左平移5个单位,向上平移4个单位得到C(一2,4),A(1,-3)也向左平移5个单位,向上平移4个单位得到A(2)如图,设C(0,,),则。(-2,加3),表示出四边形44C。的面积列出方程即可.(1)解:B<3,0)向左平移5个单位,向上平移4个单位得到C(一2,4),因此A(1,-3)向左平移5个单位,向上平移4个单位得到。(7/):(2)设C(OM),则0(-Zm-3)【点睹】本题考查坐标与图形变化平移,解题的关键是掌握平移变换的性质,间接法求面积也是本题的关键.8. (2022湖北武汉七年级期中)如图是由边长为1的小正方形构成的网格,每个小正方形的顶点叫做格点.如点A,B,D,E都在格点上,连AO,/840=90。.请选择适当的格点,仅用无刻度的直尺在网格中完成下列画图,保留连线的痕迹,不要求说明理由.B(1)将线段A8平移到OG使点A对应的点为。,连BU则正方形ABCO的面积为,AO的长度为;(2)把三角形COE先向上平移4格,再向右平移2格,得到三角形BAF,画出三角形BAE直接写出三角形CQE在两次平移中扫过的面积=;(3)在8上找一点M,使EM最短,连接EM.【答案】(1)图见解析,20,而(2)图见解析,23(3)见解析【分析】(1)根据题意做出图形,利用勾股定理求出AD,根据正方形面积公式求解;(2)在两次平移中扫过的面积等于大正方形的面积减去一个矩形面积和两个小三角形的面积即可;(3)根据垂线段最短,做出图形即可.(1)图形如下图,AO=疹百=2指、正方形ABCD的面积=2?26=20故答案为:20,25:(2)图形如下图所示,阴影部分为扫过的面积(:以在两次平移中扫过的面积=66-14x2-xl2-24=23.22故答案为:23.(3)如图EM即为所求,【点睛】本题考查了作图平移变换、三角形面积、平行四边形面积和垂线段最短知识,解题的关键是理解平移变换的性质.9. (2022河北期末)如图,在平面直角坐标系中,已知点A(0,4),B(8,O),C(8,6)三点.(1)求48C的面积;(2)如果在第二象限内有一点P(?,1),且四边形48。夕的面积是aABC的面积的两倍;求满足条件的P点的坐标.【分析】(1)由点的坐标得出BC=6,即可求出aABC的面积;(2)求出。4=4,08=8,由S四边形a8op=Saaof+Saop和已知条件得出方程,解方程即可.【解答】解:(1)TB(8,O),C(8,6),BC=6,Sc=×6×8=24;(2)VA(0,4),B(8,0),OA=4,08=8,*SPq边形4bop=Saaob+Szaop=×4×8+×4(n)=16-2m,又YS四边形a8op=2Szxasc=48,162w=48>解得:tn=-16,.*.P(-I6>1).10. (2022湖北华中师范大学第一附属中学光谷分校七年级开学考试)如图,在平面直角坐标系中,4(,5),8(T,0),C(-4,3),(1)过点B作08C4,且点。在格点上,则点。的坐标为.(2)将g46C向右平移3个单位长度,再向下平移2个单位长度得到"4G,在图中画出"4G;(3)直接写出直线AC与y轴的交点坐标.【答案】(1)(-4,2),(2,2),(5,4)(2)见解析(3)(0,号)【分析】(1)可以把AC平移使A点或C点为时应点,从而确定。点位置;(2)利用平移规律写出A、4、G的坐标,然后描点即可:(3)延长CA交),轴于点T,设点T的坐标为(0,?),利用AAOC的面积列出关于桁的方程,解方程即可.(1)解:如图所示:则点D的坐标是:(-4,-2),(2,2),(5,4).故答案为:(-4,-2),(2,2),(5,4).(2)解:将4BC向右平移3个单位长度再向下平移2个单位长度后,则"MG即为所求作的三角形,如图所示:(3)解:延长CA交y轴于点7,如图所示:J'ASSoC=4×5×3×4×2×3×1×5=,2222113设点7的坐标为(0,而,则SMg=SAoc-Saoat=5x4w-5XWI=Qm,?|加,解得:加斗,直线AC与),轴的交点坐标为(Om.故答案为:(0,胃【点睛】本题考查平移变换,三角形的面积等知识,解题的的关键是掌握平移变换的性质,学会利用面积法构建方程求解,属于中考常考题型.11. (2022河北唐山七年级期末)如图,已知A(-2,2),8(4,2),C(2,-3).(1)写出点。到X轴的距离;(2)连接AB、BC、ACf求以BC的面积;点P在),轴上,当ZXABP的面积是6时,求出点尸的坐标.【答案】(1)3(2)15(3)(0,0)或(0,4)【分析】(1)根据点到X轴的距离是点纵坐标的绝对值解答即可;(2)利用面积公式计算即可;(3)设点。的坐标为(0,6),根据面积求出b即可.(1)解:.C(2,-3),.点C到X轴的距离是3,故答案为:3;(2)如图,SA8c=;x6x5=15,(3)设点。的坐标为(0,则点P到A8的距离为卜-2|,YAB=6,Sbp=-×6×-2=6,解得b=0或b=4,点P的坐标为(0,0)或(0,4).【点睛】此题考查了坐标与图形,点到坐标轴的距离,利用面积求点坐标,正确理解坐标与图形的关系是解题的关键.12. (2022山东荷泽七年级期末)已知:A(M),3(2,0),C(4,3)(1)在如图坐标纸中描出各点,画出,ABC并求出它的面积;(2)设点P在X轴上,且/窃?的面积为4,求出点P的坐标.【答案】见解析,4(2)P(FO)或(10。【分析】(1)根据点的坐标先进行描点,然后再连线即可,用梯形的面积减去两个三角形的面积即可求出/WC的面积;(2)先根据ZkABP的面积为4,求出P8=8,根据8(2,0),即可求出点尸的坐标.(1)解:SABC=S梯形。ACD-S046SBCD=-(l+3)×4-×l×2-×2×3222=8-1-3=4(2)解:由题意可知:ABP的面积=jP8xO4=4,VOA=E:PB=S,:B(2,0)P(-6,0)或(10.0).【点睛】本题考查作图-复杂作图,坐标与图形的性质,三角形的面积等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.13. (2022山东临沂七年级期中)在平面直角坐标系中,;ABe的三个顶点坐标分别为A(-2,2),B(4,5),C(-2,-l).(1)在平面直角坐标系中描出点A,B,C,求.48C的面积;(2)x轴上是否存在点P,使CP的面积为4,如果存在,求出点P的坐标,如果不存在,说明理由;(3)如果以点A为原点,以经过点A平行于X轴的直线为V轴,向右的方向为x'轴的正方向;以经过点4平行于),轴的直线为了轴,向上的方向为轴的正方向;单位长度相同,建立新的直角坐标系,直接写出点8、点C在新的坐标系中的坐标.【答案】(1)图见解析,9存在,号,0)或停。)B(6,3),C(0,-3)【分析】(1)先描点,再顺次连接可得然后利用三角形的面积公式即可得;(2)先求出AC与X轴的交点坐标为(-2,0),再根据AACP的面积为4建立方程,解方程即可得;(3)将问题转化为将点A(-2,2)平移后至点(0,0)后,求点叫C按同样的方式平移后的坐标,再根据点的坐标的平移变换规律即可得.(1)解:描出点AaC如下:(2)解:A(-2,2),C(-2-l),.AC与X轴的交点坐标为(一2,0),AC=2-(-l)=3,设点产的坐标为P(/,。),JCP的面积为4,.g3卜2-同=4,解得6=-号或机=,则存在这样的点尸,点尸的坐标为甘,o)或停)(3)解:由题意可将问题转为:将点A(-2,2)平移后至点(0,0)后,求点民C按同样的方式平移后的坐标.,将点4(-2,2)先向右平移2个单位长度,再向下平移2个单位长度可得点(0,0),.点8(4,5),。(一2,-1)按同样的方式平移后的坐标分别为(4+2,5-2),(-2+2,-12),即分别为(6,3),(0,-3),故点5、点C在新的坐标系中的坐标为8(6,3),C(OL3).【点睛】本题考查了点坐标与图形、点的坐标的平移变换,较难的是题(3),将问题转化为平移问题是解题关键.14. (2022湖北淹水县兰溪镇兰溪初级中学七年级期中)如图长方形。ABC的位置如图所示,点8的坐标为(8,4),点尸从点C出发向点。移动,速度为每秒1个单位;点Q同时从点O出发向点4移动,速度为每秒2个单位;(1)请写出点A、C的坐标(2)几秒后,P、Q两点与原点距离相等.(3)在点P、Q移动过程中,四边形OPBQ的面积有何变化,说明理由.4【答案】(1)点A的坐标为(8,0),点C的坐标为(0,4)(2)经过§秒,P、。两点与原点距离相等(3)在点P、。移动过程中,四边形OP8。的面积不会变化,为16,理由见解析【分析】(1)根据点8的坐标进行求解即可;(2)设运动时间为f,分别表示出OP和的长,据此建立方程求解即可;(3)根据S四边形OPBC=S长方形0A8C-SABCP-SABQ进行求解即可.(I)解:四边形OABC为长方形,点B的坐标为(8,4),:.O=BC=S,OC=AB=4t二点A的坐标为(8,0),点C的坐标为(0,4);(2)解:设运动时间为则Cp=/,OQ=2tfOP=OC-CP=4,4VPQ两点与原点距离相等,JOP=OQ,4=2f,解得I=:,4经过§秒,P、。两点与原点距离相等;(3)解:在点P、。移动过程中,四边形OPH。的面积不会变化,为16,理由如下:由可得AQ=OA-OQ=8-2/,*S四边形OPBC=S长方就ABc-S&BCP-SMbq=4×8-×8z-×4(8-2)=32-4r-16+4/=16,,在点P、。移动过程中,四边形。尸8。的面积不会变化.【点睛】本题主要考查坐标与图形,元次方程的应用,正确理解题意求出OC和QA的长是解题的关键.15. (2022宁夏吴忠七年级期末)阅读理解,启智增慧.在平面直角坐标系中,点P(,b).Q(c,d)给出如下定义:对于实数上(A0),我们称点M(ka+kc,kb+kd)为尸,Q两点的V”系和点.例如,点P(3,4),Q(1,-2),则点P,。的系和点的坐标为:(2,1),如图,已知点A(4,-1),B(-2,-1).直接写出点4,8的“2”系和点坐标为,(2)若点A为8,C的“一3”系和点,求点C的坐标;若点。为A,B的,”系和点,三角形ABO的面积为6,求符合条件的A的值?【答案】(1)(4l4)(2)C佟,$(3乂=_:或:JoJLL【分析】(1)利用两点的系和点的定义,代入公式求解即可;(2)利用两点的系和点的定义,代入公式求解即可:(3)利用两点的Z“系和点,代入公式求解,注意距离为2,进行分类讨论.(1)解:由图知:A(4,-1)B(-2,-1);根据'”系和点的定义得:2×4+2×(-2)=4,2×(-1)+2×(-1)=-4,故答案为:(4,-4);(2)设C(x,y),则-3厂3X(-2)=4,-3y-3×(-1)=-1;2424,»x=»y=r*C(,一).3333(3) Y三角形A8。的面积为6,。到48的距离为2,:点D为A,8的“小系和点,则。.-2k).1 3.-l+2=-2A,或者一1一2=-2七Jk=一一或一.2 2【点睛】本题考查对新定义的理解及坐标与图形,三角形的面积,关键是通过审题列方程及分类讨论思想的应用.16. (2022山东临沂七年级期末)已知:如图AABC的位置如图所示,(每个方格都是边长为1个单位长度的正方形,448C的顶点都在格点上).点A,B,C的坐标分别为(-1,-1),(5,-1),(1,4).(1)请在图中建立平面直角直角坐标系,平移AABC使A,B,C的对应点分别为H,*,C且点A的对应点A坐标为(1,0),分别写出夕,C'两点的坐标并画出平移后的图形;Q)点、P3n,)是(1)中平面直角坐标系内的一点,点P随着AABC一起平移,点P的对应点O("+2,4).求点P的坐标并求平移过程中线段PC扫过的面积.【答案】点夕C的坐标分别是(7,0),(3,5),见解析点尸的坐标为(3,3),砍5,4),4【分析】(I)根据A,B,。的坐标确定平面直角坐标系即可,判断出B',C'的坐标,画出图形即可;(2)利用平移变换的性质求出小,的值,画出图形可得结论.(1)解:Y点A(-1,-1)的对应点N坐标为(1,0),.点的坐标平移规律是:横坐标加2,纵坐标加1,VB,C的坐标分别为(5,-1),(1,4)点区C的坐标分别是(7,0),(3,5),平面直角坐标系如图所示:(2)解:V点P(?,)平移后落在P(+2,4),tn+2=n+2f+1=4,解得,m=n=3,点尸的坐标为(3,3),次5,4),平移过程中线段PC扫过的图形是一个平行四边形,它的面积=4x2Ug2l=4.即平移过程中线段PC扫过的面积为4.【点睛】本题考查作图平移变换,平行四边形的面积等知识,解题的关键是掌握平移变换的性质,学会用割补法求平行四边形面积.17. (2022莆田期末)对于平面直角坐标系中的图形M上的任意点PCr,y),给出如下定义:将点?(x,y)平移到P,(x+e,y-e)称为将点P进行“e型平移”,点Pr称为将点P进行“e型平移”的对应点;将图形M上的所有点进行“e型平移”称为将图形M进行,型平移”.例如,将点P(x,y)平移到P'(x+l,y-1)称为将点尸进行“1型平移”.(1)已知点A(-1,2),B(2,3),将线段AB进行“1型平移”后得到对应线段A'B'.画出线段4'B',并直接写出A',"的坐标;四边形AH"A'的面积为(平方单位);(2)若点A(2,+l),8(+l,。+2),将线段A8进行“2型平移”后得到对应线段A'B',当四边形A88'A'的面积为8平方单位,试确定。的值.O- - - - 卜 2 3 4J:一【分析】(I)根据定义平移即可;根据平移后的图形,写出坐标即可;(2)利用割补法求四边形的面积.【解答】解:(1)A(-1,2)“1型平移”后得到4(0,1),B(2,3)“1型平移”后得到8(3,2);S四边彩488A=Sad+Szwj=:x4X1+(x4X1=4,故答案为:4;(2)A(2-af67+1)“2型平移”后得到/T(4ma-1),B(+l,+2)“2型平移”后得到8(+3,),如图,在四边形外作矩形CoEF,.C(2-,+2),D(2-«,«-1),E(+3,«-1),F(+3,+2),J.BC=2a-1,C=1,BF=2,B'F=2,AQ=2,'D=2,AE=2a-I,/汨=1,*CF=2+1»。=3,二S四边形A8&八=3(2+I)×(2-1)X1X2gx2X2X2=4,Y四边形A8B'A'的面积为8平方单位,40=8,=2.CF1A1B,DAfEO- - -卜 2 3 J:.二, - 18. (2022春长白县期中)如图,在平面直角坐标系中,点A(-36,0)为X轴负半轴上一点,点B(0,46)为y轴正半轴上一点,其中力满足方程3"+1)=6.(1)求点A,B的坐标;(2)点C为),轴负半轴上一点,且aAHC的面积为12,求点C的坐标;【分析】1)解一元一次方程,可得结论.(2)利用三角形的面积公式求出OC的长,可得结论.【解答】解:(1)解方程3(HI)=6,得到方=1,:.A(-3,0),B(0,4).(2)VA(-3,0),B(0,4),.OA=3,08=4,Smbc=OA=12,.8C=8,点C在),轴的负半轴上,/.OC=4,C(0,-4).19. (2022思明区校级期中)在平面直角坐标系中,点A,8在y轴正半轴上,且点A在8的下方,将线段AB进行平移得到线段CD,点A的对应点为点D,点、B的对应点为点C,(1)若点A(0,1),B(0,3),D(3,2),求点C的坐标;(2)点E是第二象限上的一个动点,过点E作EF垂直X轴于尸,连接。尸,DE,EC.若点A(0,I),B(0,b),C(a+b+f%+3),D(加,26+3),三角形。E尸的面积为S西=一之。+至,点。到直线E尸288的距离为3,试问是否存在加,使得S3星=£腐8?若存在,请求出M的值;若不存在,请说明理由.【分析】(1)求出A8的长,利用平移的性质解决问题即可.(2)利用平移变换的性质构建方程组求出小(用加表示),利用三角形的面积公式构建方程求出加即可解决问题.【解答】解:(1)VA(0,1),B(0,3),D(3,2),.AB=3-=2=CD,:,C(3,4).(2)由题意:/一:巾=:巾+3_(-2巾+3),l+b+1=m解得:十一LC3n,-n+3)»2 cEFX3333 Sadef=o=/OO.*.EF=-a+=-m+3,442£T_L),轴,AA到CE的距离为:w+3-z=3,*SEC=SCE>,"到CE的距离为:3x(=1,3w-(卞"+3)=1,解得?=色哈故存在加,使得SGBC后泌ACE,此时"1=!或20. (2022春蛇帽区期末)在直角坐标系中,已知线段AB,点4的坐标为(1,-2),点B的坐标为(3,0),如图1所示.(1)平移线段AB到线段C。,使点A的对应点为。,点8的对应点为C,若点C的坐标为(-2,4),求点。的坐标;(2)平移线段AB到线段CQ,使点C在),轴的正半轴上,点。在第二象限内,连接BC,BD,如图2所示.若S期8=7(S表示三角形BCQ的面积),求点。、。的坐标.(3)在(2)的条件下,在y轴上是否存在一点P,使受殁=;(S尸°表示三角形PCO的面积)?若存在,求出点P的坐标;若不SABCD3存在,请说明理由.【分析】(1)利用平移得性质确定出平移得单位和方向;(2)根据平移得性质,设出平移单位,根据S088=7(S1出8建立方程求解,即可,(3)设出点P的坐标,表示出PC用受出=3建立方程求解即可.SRBCD3【解答】解:(1):B(3,0)平移后的对应点C(-2,4),设3+a=2,0+Z>=4,*.a=-5,b=4,即:点B向左平移5个单位,再向上平移4个单位得到点C(-2,4),AA点平移后的对应点。(-4,2),(2) Y点C在),轴上,点O在第二象限, 线段A8向左平移3个单位,再向上平移(2+y)个单位,符合题意,C(0,2+y),。(-2,y),连接OD,SBCD=SBOC+SCOD-SABOD=-OB×OC+-OC×2-OB×y=7,222z.y=2,:.C(O,4).0(-2,2):(3)设点P(O,W,PC=4-n, SAPCD_2SbBCD34-m×2=三×7,4-m=, 2-26.m=-i%m=-9存在点P,其坐标为(O,-三)或(O,g).21.(2022河南安阳七年级期末)问题情境:在平面直角坐标系Qy中,对于任意一点Pay),定义点P的“绝对和'F(P)为:J(P)=+y.例如:己知点P(2,3),则d(P)=2+3=5.y$4,/9,/2»/Iz4%乙一二-I»解决问题:(1)已知点44,-1)则"(八)=;(2)如图,已知点M(4,4),连接点0、M得线段OM.点。是线段OM上的一个动点.若或。)=6,求点。的坐标;若线段OM向上平移机个单位(团0),点。的对应点为。',如果d(Q')=2,求的取值范围;若线段OM先向右平移。个单位(。0),再向上平移。个单位仅0)后,点。的对应点依次为Q'、Q",连接点Q、。'、。得到VQ7。.则VQQm的形状是;VQ。Q的面积是.(用含有字母服b的式子表示)【答案】3(2)。(3,3);(2)0<n2;宜角三角形,ab.【分析】(1)根据“绝对和”的定义即可求解:(2)由M点坐标为(4,4),可知OM上所有点的横、纵坐标都相等.即可设Q(x,X)(Ox4),再根据“绝对和”的定义即可列出关于X的绝对值方程,解出入,再舍去不合题意的解,即可得出答案;根据题意可设0(»y+M(0"4),再结合“绝对和”的定义可得出y+y+m=2,再由帆>0,即可得IHy=I-条由y的取值范围,即可求出桁的取值范围;由平移的性质可知VQQ'Q为直角三角形,|LNQOQ=90。,Q。=。,Q,Q,=b,再根据三角形的面积公式计算即可.(D(八)=4+(-l)=3,故答案为:3;(2),M(4,4),0M上所有点的横、纵坐标都相等.点。是线段OM上的一个动点,故可设Q(Hx)(0x4).VtZ()=6,x+=6,解得:x1=3,x2=-3(舍),点。的坐标为(3,3);根据题意可设。'(乃y+m)(0y4),则y+y+时=2.inm.w>0,y+y+n=2y=一,.,.01-4,解得:-6m2f.*.O<w?2;线段OM先向右平移“个单位("O),再向上平移b个单位R>0)后,点。的对应点依次为。、。",.VQQ'0为直角三角形,且NQQ'Q=90。,由平移可知QQ'=*Q,Q,=htJ.S=QQ,Q,Q'=ab.故答案为:直角三角形,ab.【点睛】本题考查坐标与图形,一元一次方程的应用,平移的性质.读懂题意,理解“绝对和”的定义是解题关键.22. (2022江苏苏州八年级阶段练习)如图,在平面直角坐标系中,长方形OABC的顶点4,8的坐标分别为A(6,0),8(6,4),。是BC的中点,动点P从。点出发,以每秒1个单位长度的速度,沿着OfATH一。运动,设点P运动的时间为,秒(0<r<13).(1)点。的坐标是;当点P在AB上运动时,点尸的坐标是(用,表示);(2)求出APOD的面积等于9时点尸的坐标;【答案】(3,4);(6,b6)当尸(4.5,0)或(6,2)时,APOQ的面积为9.【分析】(1)利用矩形的性质求出以C两点坐标,再利用中点坐标公式计算即可;点尸在线段A8上,求出以即可;(2)分三种情形分别讨论求解即可.(1)解:Y四边形OABC是矩形,A(6,0),B(6,4),:.C(0,4),£是SC的中点,。(3,4).当尸在AB上运动时,P(6,/-6),故答案为:(3,4),(6,r-6);(2)解:当OV£6时,点尸的坐标为"0),由题意得:×r×4=9,解得:=4.5,点P的坐标为(4.5,0);当6Vf10时,点2的坐标为(/-6,0),由题意得:SAPOD=S矩形OCBA-SkoPA-SXPBD-S>CDO,24-×6×(r-6)-×3×(10)-6=9,解得:r=8,二点尸的坐标为(8,0);当IOVfVI3时,P(16,4),PD=3-tfSPOD=(134)×4=9,解得:/=8.5(不合题意舍弃),综上所述,当?(4.5,0)或(6,2)时,aPO。的面积为9.【点睛】本题考查了矩形的性质、三角形的面积,解题的关键是理解题意,学会用分类讨论的思想思考问题,学会利用参数构建方程解决问题.23. (2022湖北武汉七年级期末)在平面直角坐标系中,已知点A(,0),B(b,6),C(c,3),a,b,(a-2b+c=-2。满足r入r.(1)若。=2,求三角形ABC的面积;(2)将线段8。向右平移?个单位,使平移后的三角形ABC的面积小于3,求7的取值范围;(3)若点O(+6,6),连接4。,将线段BC向右平移个单位,若线段8C与线段Ao有公共点,请直接写出的取值范围.【答案】(1)6(2)2Vm<4或4V机V6(3)56【分析】(1)解方程组得出B(,6),C(a-2,3),根据=2,求出8(2,6),C(0,3),判断出A8y轴,进而用三角形的面积公式即可得出结论;(2)延长BC交X轴于从根据平移得出点的坐标,再分两种情况,得出4EF的面积,再用平移后的三角形ABC的面积小于3,即可得出结论;(3)先表示出点6,C平移后对应的点尸,Q坐标,最后用点P,。分别落在线段A。上,即可得出结论.-2b+c=-2a-b(1)解:Ymb,。满足C,-<B(,6),C(a2,3),2a-b-c=2c=a-2当。=2时,B(2,6),C(0,3),A(2,0),如图,三角形ABC的面积为6;(2)如图2,延长8C交X轴于",-:B(小6),C(-2,3),点B向下平移3个单位,再左平移2到点G点C向下平移3个单位,再向左平移2个单位到点“,(小4,0)VA(«,0),B(小6),C(-2,3),,线段BC向右平移机个单位得到(a÷w,6),F(-2+n,3),当点尸在点G左边时,S、AEF=S梆形BHAE¾形BCFES佛彩CHAF(什上+4)×6-3w-(,+。-+4)×333=3(w+4)-3w-(n+4)=-/n+6»22 线段BC向右平移m个单位到达E5处,使三角形ABC的面积小于3,30<-m+6<3,.*.2<n<4,2:lI点隹点G7|边时,SAEF=(SEa边形BBE+S站形CHV)-S格形=3?+!(m+a-a+4)×3-(m+a-a

    注意事项

    本文(专题3.1坐标系中的面积问题与规律问题专项训练(解析版).docx)为本站会员(夺命阿水)主动上传,课桌文档仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知课桌文档(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-1

    经营许可证:宁B2-20210002

    宁公网安备 64010402000986号

    课桌文档
    收起
    展开