欢迎来到课桌文档! | 帮助中心 课桌文档-建筑工程资料库
课桌文档
全部分类
  • 党建之窗>
  • 感悟体会>
  • 百家争鸣>
  • 教育整顿>
  • 文笔提升>
  • 热门分类>
  • 计划总结>
  • 致辞演讲>
  • 在线阅读>
  • ImageVerifierCode 换一换
    首页 课桌文档 > 资源分类 > DOCX文档下载  

    人教B版(2019)选择性必修一第二章平面解析几何章节测试题(含答案).docx

    • 资源ID:1078674       资源大小:217.02KB        全文页数:19页
    • 资源格式: DOCX        下载积分:5金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要5金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    人教B版(2019)选择性必修一第二章平面解析几何章节测试题(含答案).docx

    人教B版(2019)选择性必修一第二章平面解析几何章节测试题学校:姓名:班级:考号:一、选择题1 .己知椭圆C的焦点为F1巴(1,0)过F2的直线与C交于A,B两点.若IAKl=2F2B,AB=m|,则C的方程为()2 22)22a,i+=ib.二+工=1cx+r=D.r+r=i23243542 .设尸为双曲线C:W-E=IS>08>0)的右焦点。为坐标原点,以。产为直径的圆a-b与圆f+y2=/交于PQ两点.若IPaTO耳,则C的离心率为()A.&B3C.2D53 .已知椭圆£+£=(a>b>0)的右焦点为尸(3,0),过点F的直线交椭圆于48两点.crb2若AB的中点坐标为(LT),则E的方程为()A.1+Z=iB.i+Z=C.-+Z=1D.i+Z=4536362727181894 .已知椭圆与=l(4>b>0),P(0,2),。(0,-2)过点P的直线与椭圆交于A,B,过点Q的直线乙与椭圆交于CQ,且满足"/加设AB和C力的中点分别为M,N,若四边形PMQV为矩形,且面积为4石,则该椭圆的离心率为()A.lB.-C.立D胚33335.已知双曲线C:工工=1(。>0/>0)的左顶点为4右焦点为七以厂为圆心的圆与双曲线。的一条渐近线相切于第一象限内的一点A若直线AB的斜率为L则双曲线C3的离心率为()A.lB.-C.-D.23346.圆心为(1,T)且过原点的圆的方程是()B.( + l)2+(y-l)2 =1A.(-l)2÷(y+l)2=lC.(-l)2+(y + l)2=2D.(x+l)2+(y-l)2=27.已知耳,尸2是椭圆C2 2 x,y 林+铲= l(a>b>O)的左,右焦点,A是C的左顶点,点P在过A且斜率为3的直线上,ZP6K为等腰三角形,/月入尸=120。,则C的离心率为()6A.-B.lC.lD.132348 .加斯帕尔蒙日(如图甲)是1819世纪法国著名的几何学家,他在研究圆锥曲线时发现:椭圆的任意两条互相垂直的切线的交点都在同一个圆上,其圆心是椭圆的中心,这A.3B .4个圆被称为“蒙日圆”(图乙),则椭圆C:卫+£=1的蒙日圆的半径为()C.5D.6二、多项选择题9 .若对圆(为_l)2+(y_i)2=上任意一点尸(,y)j3-4y+d+3x-4y-9的取值与XJ无关,则实数。的可能取值是()A.-4B.-6C.7D.610 .已知直线L(+2)x-y+勿-3=0在R轴上的截距是y轴上截距的2倍,则。的值可能是()A.-B.0C.-D.-22211 .直线/与圆(/-2y+y2=2相切,且/在X轴、y轴上的截距相等,则直线/的方程可能是()A.x+y=0B.x+y-2应=0C.x-y=0D.x+-4=012 .已知曲线。的方程为二+上=i(kR)()9-kk-A.当=5时,曲线C是半径为2的圆B.当Z=O时,曲线C为双曲线,其渐近线方程为y=±L3C.存在实数2,使得曲线。为离心率为正的双曲线D.Z>1”是“曲线。为焦点在X轴上的椭圆”的必要不充分条件三、填空题13 .与直线x+y=0相切于点N(-2,2)的圆。过点M(4,2),则圆C的半径为.14 .已知双曲线。的左顶点为A,右焦点为E离心率为e,动点8在双曲线。的右支上且不与右顶点重合,若N8E4=eNB4尸恒成立,则双曲线。的渐近线方程为.15 .已知产为抛物线C:V=2p(p>0)的焦点,MN都是抛物线上的点,O为坐标原点,若AOFN的外接圆与抛物线C的准线/相切,且该圆的面积为2,点,则吗的最小值为.16 .已知抛物线光学性质:从焦点出发的光线,经过抛物线上的一点反射后,反射光线平行于抛物线的轴.已知抛物线C:V=2px(p0),一条光线从点P(3,l)沿平行于X轴的方向射出,与抛物线相交于点M经点M反射后与C交于另一点N.若OMON=-3,则MN两点到y轴的距离之比为.四、解答题17 .己知椭圆£+£=1(。>6>0)的离心率为在似椭圆的2个焦点与1个短轴端点a-b-3为顶点的三角形的面积为2近.(1)求椭圆的方程;(2)如图,斜率为k的直线/过椭圆的右焦点K且与椭圆交与A,B两点,以线段AB为直径的圆截直线X=I所得的弦的长度为6,求直线/的方程.18 .已知焦点在X轴的抛物线C经过点(2,-4).(1)求抛物线C的标准方程.(2)过焦点/作直线/,交抛物线C于A乃两点,若线段AB中点的纵坐标为-1,求直线/的方程.19 .过椭圆c:+y2=i内一点引一条弦,使该弦被点M平分.47I2)(1)求该弦所在的直线方程;(2)求该弦的弦长.20 .已知椭圆C/+J=l(>b>0)过点(2,回,离心率为常(1)求椭圆。的方程;(2)已知C的下顶点为4,不过A的直线/与C交于点石厂,线段石尸的中点为G,若NAGE=2NGA£试问直线/是否经过定点?若经过定点,请求出定点坐标;若不过定点,请说明理由.21 .1911年5月,欧内斯特卢瑟福在哲学杂志上发表论文.在这篇文章中,他描述了用a粒子轰击000004cm厚的金箔时拍摄到的运动情况.在进行这个实验之前,卢瑟福希望a粒子能够通过金箔,就像子弹穿过雪一样.事实上,有极小部分粒子从金箔上反弹.如图显示了卢瑟福实验中偏转的粒子遵循双曲线一支的路径.(1)结合图象,求出该双曲线的渐近线方程.(2)如果粒子路径的顶点距双曲线的中心IoCm,试求出该粒子路径的模型.22 .已知抛物线Cx2=2py(p>0)上一点P(2,%)到焦点F的距离为2.(1)求抛物线C的方程;(2)抛物线C的准线与y轴交于点A,过A的直线I与抛物线C交于M,N两点,直线MF与抛物线C的准线交于点及点B关于y轴对称的点为试判断FM*三点是否共线,并说明理由.参考答案1 .答案:B解析:如图,由已知可设内邳=,则|伍|二2,忸耳I=IABI=3"4?2 ÷9w2 -9h222n3n由椭圆的定义有2=忸制+忸剧=4",.*=2TA用=2.在?1耳8中,由余弦定理推论得CoSN448=在中,由余弦定理得42+42一2-2小21=4,解得=乎.2a=4=2-3,.。=3».,.b2=a2-C2=3-1=2,.所求椭圆方程为E+E=,32故选B.2 .答案:A解析:设PQ与轴交于点A,B由对称性可知尸Q_LX轴,又.|尸。|=|。月=如.归川=,二丛为以。尸为直径的圆的半径,.A为圆心IoAI二.p1,)又P点在圆f+y2=a2上,邑+幺=/,即£_=。2,©2=g=2442a2故选A.3 .答案:D解析:设 A(Xl,%),8。2,必),所以 ,运用点差法,所以直线AB的斜率为 =与设直线方程为y=&.3),联立直线与椭圆的方程(/+/)/_6/工+9从-/=0,所以a2x1+x2=IbW=2;又因为/一从9,解得/=9,/=18.a+b4 .答案:D解析:如图,不妨设4两条直线的斜率大于零,连结OM解得IPMl=2,M2=2J,或IPMl=2LMQ=2(舍),所以IPMI=2,1M01=23,在APMQ中,因为IOMI=I尸Ml=IPOl=2,所以ZBPO=/POM=60°,故此时Icab=tan30。=乎,kOM=tan150o=-设Aa,弘),8(,必),则,2yF2%f+ ÷两式相减得(%/)(%+/)+(X-及)(%+%)=Oa1b21b2=3a2即上&.出也=一殳,即A.kXs-X2X,+X2/KAB%M因此离心率/=C=>=2,所以e=远,a2a233故选:D.5 .答案:C解析:双曲线C的渐近线方程为y=±2,则直线。8的斜率为2(。为坐标原点),aa所以,直线B尸的斜率为一/易知点尸(c,O)、A(-,0),所以,直线3尸的方程为y=-x-cYy = x联立1 ax -,解得<y =abab由题意可得心8a一+ a c= ,即 + c = 37, a + c 3所以,(a+c)?=9必=9卜2一/),则c+=9(c-),故=£=(.故选:C.6 .答案:C解析:圆心为且过原点的圆的半径为J(I-0)2+(T-0)2=L故圆心为(LT)且过原点的圆的圆的方程为(X1)2+(y+l)2=2,故选:C.7 .答案:D解析:分析:先根据条件得PK=2c,再利用正弦定理得c关系,即得离心率.解析:因为工为等腰三角形,/月与尸=12()。,所以PF2=FyF2=Ic.由AP斜率为得,tanZPAR=»,'SinZPAF2=.,cosZ-PAF2=626"13213由正弦定理得类 AF?sin ZPAF2sin ZAPF2.a=4c>e=-,4故选D.8 .答案:C解析:由蒙日圆的定义,可知椭圆C:(+/l的两条切线户4、尸3的交点(4,3)在圆上,所以蒙日圆的半径R=用于=5故选:C.9 .答案:CD解析:(x-l)2+(J-I)2=L=l+cos0,y=l+sin,则3x-4y=3cos6-4sine-l=5sin(O-6)1,其中tan=,sin(9-)-l,3x-4y-6,4»3x-4y+tz+3x-4y-9表示数轴上3x-4y到-和9的距离之和,当-3x-4y9时,距离和为定值|9+4,故-<-6,即6故选:CD.10 .答案:AC解析:依题意可得-2,当=3时,直线/为工x-y=O,此时横纵截距都等于0,满足题意;22当工3时,直线/在X轴上的截距为主必,在),轴上截距船3,2(7+2则U=2x(203),得4=3或4=3(舍去)a+2'/22综上所述,。的值为或3.22故选:AC.11 .答案:ACD解析:圆(4-2)2+V=2的圆心坐标为(2,0),半径=,依题意直线/的斜率存在,若直线I过坐标原点,设直线/为y二区,即h-y=0,7网r-则'=F才=忘'解得"=乩所以直线/的方程为x+y=。或-y=0;若直线/不过坐标原点,设直线/为尤+y=加(机0),即+y-m=0,则4=2必=0,解得加=0(舍去)或加=4,2所以直线/的方程为无+y-4=0,综上可得直线/的方程为+y=或-y=或+y-4=o.故选:ACD.12.答案:ABD解析:A.当&=5时,曲线方程为f+y2=4,所以是半径为2的圆,故正确;B.当Z=O时,曲线方程为卷一V=1,所以是双曲线,且其渐近线方程为y=±3,故正确;C.若曲线C为离心率为0的双曲线,则9-八"1=0,方程无解,故错误;D.当攵=10时,攵>1,曲线C为焦点在),轴上的椭圆,故不充分,当曲线C为焦点在X轴上Y_i>0的椭圆时,则,解得1<%<5,故必要,故正确;9-k>k-故选:ABD.13 .答案:3解析:过点N(-2,2)且与直线工+丁=0垂直的直线为丁=工+4,则圆心在直线丁=工+4上,又圆心在线段MN的垂直平分线上,即圆心在直线1=1上.所以圆心坐标为(1,5卜则圆的半径z=MC=J(41)2+(2一51=3a故答案为:3人14 .答案:y=±y3x解析:如图:双曲线C::一方=l(>O,方>0)中,AF=+c,将X=C代入双曲线方程得U_f=l,整理可得:y=±l,a2b2,一取点,C,贵位于第一象限,所以M=生,Ia)。b1则.daBF了b2c2-a1c-atanZBAF=-=e-AFa+c(+c)aa+c)a所以tanZBAF=tan=e-l»当 e>2 时,e-l>l,tan90o < tan45o = 1 ,此时不符合题意,故不成立,当 IVe<2 时,e-1 < Ltan90。 tan45° = 1,此时不符合题意,故不成立,当e=2时,tan=tan45o=1=e-l,所以e=2,即£=2,可得=Q=4,所以Z=3,aaa所以乂=3,2=土布,a-a所以双曲线的渐近线方程为y=±3a-,故答案为:y=+y3.15 .答案:包或Le22解析:依题意作下图:ORV的外接圆与抛物线C的准线/相切,外接圆的圆心到准线的距离等于圆的半径,又圆心在。尸的中垂线上,中垂线的方程为X=K,准线方程为x=-K,.K+'=3,p=2,42242并且点。是准线与X轴的交点;抛物线C的方程为:y2=4x,过M作MF±/得IMFl=IM目,ImfIIMFl,A=il=cosNFMQ=cosNMQF,M0IMQlVL.修劳最小即NMQF最大,显然当QM与抛物线相切时NMQF最大,设直线QM的方程为y=2(工+1卜联立2=4x得:k2x2+(2公一4b+二=0,令=(2k24)24k4=0,解得4=±1,即NMQF=->.,cosZ.MQF-,故的最小v74"2IMQl值为立;2故答案为:也.216 .答案:!或0.062516解析:依题意,由抛物线性质知直线MN过焦点Fq,O,设M(XI,y),N*2,为),直线MN的方程为=ry+y,_p_X)2y2-,2pty-p2=0,V=2px所以'MT,将吟务W,a则OM-ON=x1x2+Xy2?二一3,又>0,所以=2,故抛物线方程为y2=4x而y=1,故%=-4,所以"=L,乂=21=4I444所以MN两点到y轴的距离之比为国.x216故答案为:_L.1617 .答案:(1)l+Z=;62(2) y=无-2或y=r+2.解析:(1)由椭圆E+E=(o>b>0)的离心率为远,a2b2v73得C=逅-a,b=更-a-33由S=L.2c.8=a2=2>2得=>6,b-2,23所以椭圆方程为+广=1.62(2)设直线=-2),AaM,8(%,%)48中点用小,).联立方程('二8"-2)得(+3&2)272j+i2公-6=0,X2+3/-6=0v712F12-6.I-.26(l+A:2)所以XO=6k21+3公点M到直线X=I的距离为d=k0T=6k211+3公一1+3/由以线段AB为直径的圆截直线无=1所得的弦的长度为5所以"后(1+公)/鸟,1 +3/Jkl÷3Pj(2,解得2=±1,所以直线/的方程为y=x-2或y=-x+2.18.答案:(1)=8x;(2)4x+y-8=0.解析:(1)由题意可设抛物线方程为:=2px(p>0),抛物线过点(2,T),.16=4p="=4,/.y2=8x;(2)设/的方程为x=/w),+2,A(5,y),8(w,y2),y2=8x9则由<=>r-8ny-16=0,=64+64>0,X=my+2所以/+%=8m,由题意,=Tny+力=-2,y+=8m=-2=相=一;,½=-y+2=>4x+y-8=0,即直线/的方程为4x+y-8=0.19.答案:(1)x+2y-2=05解析:(1)设过点M的弦与椭圆相交于Aa,x),8(,%)两点,M为A8的中点,.,.x1+x2=2,y1+y2=1,又A,8两点在椭圆上,.x;+4y;=4,考+4父=4,两式相减得可一引+犬犬-阳=。,即(X+x2)(x1-x2)+4(y1+y2)(y1-y2)=O(1、由题意当内=工2时,M1,不能平分该弦,因此X。工2,<2)故直线AB的斜率为k=江互=.4(+%)42.该弦所在的直线方程为丁一3二3(工一1),即工+2)-2=0;x+2y-2=0(2)联立直线与椭圆方程得2,得y2-y=0,+y=l14'解得y=0或1,不妨取y=0,%=l,则或2二。,Jl=01、2=1即A(2,0),B(0,l),.AB=(2-0)2+(O-I)2=5-2220.答案:(1)三+匕=184(2)见解析解析:(1)依题意,得c2a2/z-2,又a2=b2+C2,解得,22(a&(负值舍去)b=2所以椭圆方程为占+=1.84(2)因为NAGE=2NG4F,NAGE=NGA尸+NAFG,所以ZGAF=ZAFG,GA=GF,又G为线段EF的中点,所以IGAI=JMl,因此AEJ.AF.根据题意可知直线I的斜率一定存在,设I的方程为y=kx+tnyE(XI,y1),F(x2,%),联立y=kx+m,X2y2I消去乂84得(2k2+l)x2+4knc+2w2-8=0,=(4?)2-4(21一8)(2/+),根据韦达定理可得=一熟”三因为A(0,-2),所以AEAF=(x1,y1+2)(x2,y2+2)=(1+A:2)x1X2+&(?+2)(芭+x2)+(n+2)2=j+(m+2)2,所以(1+/境胃+细+2)碧/W+?)?=0,7整理得(m+2)(3机2)=0,解得2=-2或6=(.又直线/不经过点A(0,-2),所以2=-2舍去,2(2、y=k+-Oy-于是直线/的方程为3,恒过定点I3人该点在椭圆C内满足a>0,21.答案:(1)y=±x(x0)(2)-Z-=(x10)100100解析:(1)由图可知一条渐近线的倾斜角为45。,故一条渐近线斜率Z=tan45。=1,由渐进线的对称性知,双曲线的两条渐近线方程为y=±x(x0).(2)由图知,双曲线的焦点在X轴上,设双曲线的方程为士*.=13>0/>0)(%"),ah因为双曲线的顶点到中心的距离为IOCm,所以4=10,又由(1)知,2=1,所以=10,a所以该粒子路径模型为二_工=l(10).10010022.答案:丁="Q)FM8'三点共线,理由见解析4=2p),o解析:(1)由1p得p=2,%+§=2u乙所以抛物线。的方程为f=4y(2)抛物线C的准线方程为y=T,所以4(0,-1).易知直线I的斜率存在,设直线/的方程为y=Ax-I,f(x1,y),N(,%)联立方程组":一1,得/一4"+4=0,Jr=4y则+电=4左,XW=4.由A=6&26>0/寸k>1或k<1,直线M尸的方程为y=至4x+l,令y=T,%-2%'T%=ZZ=y1y-l=kx2=AlX2=/一斗x1X124所以原w=A和,故F,N,8'三点共线.

    注意事项

    本文(人教B版(2019)选择性必修一第二章平面解析几何章节测试题(含答案).docx)为本站会员(夺命阿水)主动上传,课桌文档仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知课桌文档(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-1

    经营许可证:宁B2-20210002

    宁公网安备 64010402000986号

    课桌文档
    收起
    展开