欢迎来到课桌文档! | 帮助中心 课桌文档-建筑工程资料库
课桌文档
全部分类
  • 党建之窗>
  • 感悟体会>
  • 百家争鸣>
  • 教育整顿>
  • 文笔提升>
  • 热门分类>
  • 计划总结>
  • 致辞演讲>
  • 在线阅读>
  • ImageVerifierCode 换一换
    首页 课桌文档 > 资源分类 > DOCX文档下载  

    国际清算银行-金融科技与银行信贷:他们对货币政策有何反应?(英)-2023.12_市场营销策划_重点.docx

    • 资源ID:1106893       资源大小:319.52KB        全文页数:20页
    • 资源格式: DOCX        下载积分:5金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要5金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    国际清算银行-金融科技与银行信贷:他们对货币政策有何反应?(英)-2023.12_市场营销策划_重点.docx

    BISBISWorkingPapersNo1157Fintechvsbankcredit:Howdotheyreacttomonetarypolicy?byGiulioCornelli,FiorellaDeFiore,LeonardoGambacortaandCristinaManeaMonetaryandEconomicDepartmentDecember2023JELclassification:D22,G31zR30Keywords:fintechcredit,monetarypolicy,PVAR,collateralchannelBISWorkingPapersarewrittenbymembersoftheMonetaryandEconomicDepartmentoftheBankforInternationalSettlements,andfromtimetotimebyothereconomists,andarepublishedbytheBank.ThepapersareonSUtyeCtSoftopicalinterestandaretechnicalincharacter.TheviewsexpressedinthemarethoseoftheirauthorsandnotnecessarilytheviewsoftheBIS.ThispublicationisavailableontheBISwebsite(www.bis.org).©BankforInternationalSettlements2023.Allrightsreserved.Briefexcerptsmaybereproducedortranslatedprovidedthesourceisstated.ISSN1020-0959(print)ISSN1682-7678(online)Fintechvsbankcredit:howdotheyreacttomonetarypolicy?GiulioCorneIIi,FiorellaDeFiore,LeonardoGambacortaandCristinaManea*AbstractFintechcredit,whichincludespeer-to-peerandmarketplacelendingaswellaslendingfacilitatedbymajortechnologyfirms,iswitnessingrapidgrowthworldwide.However,itsresponsivenesstomonetarypolicyshiftsremainslargelyunexplored.Thisstudyemploysanovelcreditdatasetspanning19countriesfrom2005to2020andconductsaPVARanalysistoshedsomelightonthedifferentreactionoffintechandbankcredittochangesinpolicyrates.Themainresultisthatfintechcreditshowsalower(evennon-significant)sensitivitytomonetarypolicyshocksincomparisontotraditionalbankcredit.Giventhestillmarginal-althoughfastgrowing-macroeconomicsignificanceoffintechcredit,itscontributioninexplainingthevariabilityofrealGDPislessthan2%,againstaroundonequarterforbankcredit.JELCodes:D22,G31,R30.Keywords:fintechcredit,monetarypolicy,PVAR,collateralchannel.GiulioCornelli(email:giulio.cornellibis.org)iswiththeBankforInternationalSettlements(BIS)andtheUniversityofZurich(UZH).Correspondingauthor.FiorellaDeFiore(email:fiorella.defiorebis.org)andLeonardoGambacorta(email:Ieonardo.gambacortabis.org)arewiththeBISandresearchfellowsofCEPR.CristinaManea(CriStina.maneabis.org)iswiththeBIS.TheauthorsthankMaxCroce,MarcoJacopoLombardiandoneanonymousrefereeforhelpfulcomments.TheviewsexpressedarethoseoftheauthorsanddonotnecessarilyrepresentthoseoftheBankforInternationalSettlements,UZHandCEPR.1. IntroductionCreditmarketsareundergoingaprofoundtransformation.Whiletraditionallenderssuchasbanksandcreditunionscontinuetobetheprimarysourceoffinanceinmosteconomies,withcapitalmarketsalsoplayinganimportantroleinsomecases,newintermediarieshavebeguntomaketheirmark.Inparticular,digitallendingmodelssuchaspeer-to-peerandmarketplacelendinghaveseensignificantgrowthinnumerouseconomiesoverthepastdecade(Claessensetal.,2018).Furthermore,inmorerecentyears,severalprominenttechnology-drivencompanies(oftenreferredas,bigtechs/z)haveventuredintocreditmarkets,providingloanstotheirclientseitherdirectlyorinpartnershipwithfinancialinstitutions(Frostetal.2019).Thesenewtypesofcredit,enabledbyonlineplatformsandbigdataforassessingcreditworthinessarecommonlytermed,fintechcredit". Fintech credit encompasses various innovative credit forms. This includes digital lending models such as peer- to-peer (P2P)marketplace lending and invoice trading, all facilitated by online platforms rather than traditional banks or lending institutions. Another notable form is wbig tech credit1', which is credit extended either directly or in partnership with financial institutions by large firms primarily engaged in the technology sector. For simplicity in this paper we group these two alternative finance forms together, referring to both collectively as wfintech credit".Fintechcreditiswitnessingrapidglobalexpansion,achievingmacroeconomicsignificanceinmanycountriesincludingChina,Korea,Malaysia,andKenyawhereitreachesupto5%oftotalcredit(Cornellietal.r2023).Inlightofthistrend,itbecomesessentialtoinvestigatehowfintechcreditrespondstomonetarypolicyandtoidentifythekeydifferencesinitsmonetarytransmissionmechanismrelativetotraditionalbankcredit. See De Fiore et al (2023) for a model-based analysis of the relative impact of big tech and bank credit on the transmission of monetary policy.Threeprimarydifferencesbetweenfintechandbankcreditcouldinfluencetheirresponsestoamonetarypolicyshock.First,ratherthanrelyingonphysicalcollateraltoaddressagencyissuesbetweenlendersandborrowers,thebusinessmodeloffintechcreditisgroundedindata(Gambacortaetal.,2019).Asaresult,fintechcreditresponsivenesstoassetpricefluctuationstriggeredbyshiftsinmonetarypolicyislower(Gambacortaetal.,2022).Second,fintechplatformsmayoperatewithinregulatoryframeworksdistinctfromthosegoverningtraditionalbanks,enablingthemtoextendcreditundervariedterms.Moreover,thecompetitivedynamicsbetweenfintechplatformsandconventionalbankscanshapecreditofferingsandtheirreactionstomonetarypolicyindifferentways.Astraditionalbankcreditbecomesmoreconstrainedduetomonetarypolicytightening,businessescouldreaddresstheirneedstowardsfintechplatforms(Hasanetal.,2023).Third,thesuperiormonitoringandscreeningcapabilitiesofbigtechlendersrendertheircreditscoringhighlysensitivetochangesinfirms1transactionvolumesandnetworkscores,especiallyforonlinefirms(Gambacortaetal.2022).Therefore,anyalterationinmonetarypolicyaffectinggeneralbusinessconditionscouldswiftlyinfluencecreditsupply.Inparticular,whenmonetarypolicyisrelaxed,bigtechlendersaremorelikelytoestablishnewlendingrelationshipswithfirmsthantheirtraditionalcounterparts(Huangetal”2023).Thissuggeststhatbigtechcreditmightfacilitatethetransmissionofmonetarypolicyviatheextensivemarginrelativetotraditionalbankloans.Insummary,whilethefirsttwodifferencessuggestadiminishedeffectivenessofmonetarypolicythroughfintechcredit,thelatterwouldimplytheopposite.Toshedsomelightonwhichoftheseeffectsdominates,thispaperutilisesnewdatafor19countriesovertheperiod2005-2020(Cornellietal,2023).WeconductaPanelVAR(PVAR)analysistoassesstheresponsesoffintechandbankcredittoamonetarypolicyshock.Ourprimaryfindingisthatfintechcreditexhibitsareduced(evennon-significant)responsivenesstomonetarypolicyshockscomparedtobankcredit.2. DatadescriptionThePVARanalysisisbasedonannualdatafor19countriesovertheperiod2005to2020. CountriesZgeographical areas included in the analysis are: Australia, Brazil, Canada, Chile, China, Euro area, Indonesia, Israel, India, Japan, Korea, Mexico, Russia4 South Africa, Switzerland, Thailand, Turkey, United Kingdom and United States. The behaviour of fintech and bank credit may vary between advanced economies (AEs) and emerging market economies (EMEs). However, due to the limited number of observations available (96 for AEs and 150 for EMEs), we are unable to perform a sample split analysis for the two groups of countries.Theinteractionbetweenmonetarypolicy,thecreditmarketandeconomicactivityisanalysedbymeansofthefollowingvariables:i)thelogarithmofthepropertypriceindex(Pk);ii)thelogarithmofrealGDP(V);iii)thelogarithmoftheconsumerpriceindex(p);iv)thelogarithmofbanklending(£);v)thelogarithmoffintechcredit(F);vi)themonetarypolicyshortterminterestrate(i).ThepropertypriceindexandthebankcreditdataarecompiledbytheBIS.TherealGDPandtheCPIcomefromtheIMF,WorldEconomicOutlook.Theshorttermratehasbeenobtainedfromnationalcentralbanks,Based on data availability, we replace the short-term rate with the shadow rate from UKmfa, UK Limited. For more details see Krippner (2013).whilefintechcreditcomesfromthenewdatasetdevelopedinCornellietal(2023).Toavoidtheproblemofspuriouscorrelations,wehaveconsideredaPVARinfirstdifferences.ThesummarystatisticsofallthevariablesusedintheanalysisarereportedinTable1.Summarystatistics1Table1ObservationsMeanStddevMinMaxLn(propertypriceindex)2740.050.05-0.020.18Ln(realGDP)3040.010.09-0.160.16Ln(CPI)3040.030.030.000.10Ln(bankcredit)3040.070.13-0320.46Ln(fintechcredit)3040.380.73-0.222.43shorttermrate3040.231.56-9.507.771DataWinsorisedatthe5thand95thpercentiles.Sources:Cornellietal(2023);BIS;IMF;nationaldata;authors'calculations.Table2belowreportsunitrootPhillips-Perrontestsforallvariablesinfirstdifferences.Thenullhypothesisthatthevariablescontainunitrootsisalwayslargelyrejected.Unitroottests1Table2Ln(propertypriceindex)Ln(realGDP)Ln(fintechcredit)shorttermratee£U-,-5b方P-valueStatP-valueP-valueStatP-value)P-valueco方P-valueInversechi-squared(38)81.70.0013430.00104.60.00204.70.0C100.10.0C203.50.0CInversenormal-4.00.00-730.00-5.80.00-10.30.0C-5.80.0C-10.80.0CInverselogitt(99)-4.10.00-820.00-6.10.00-12.80.0C-6.00.0C-12.90.0CModifiedinvchi-squared5.00.0011.00.007.60.0019.10.0C7.10.0C19.00.0C1BasedonPhillips-Perrontests.Thenullhypothesisisthatallpanelscontainunitroots.Thesampleincludes19countriesovertheperiod2005-2020.DataWinsorisedatthe5thand95thpercentiles.Sources:Authors'calculations.3. ThePVARModelWemodelasix-variableVARsystem;allthevariables,thatarefoundtobe1(0),aretreatedasendogenous.Therefore,thestartingpointofthemultivariateanalysisis:2ct=c+Zctk+££ctC=I,Nt=lf,TklVVWN(ON)(1)wherezct=pk,Y,p,L,F,iandctisavectorofresiduals.We treat cross-sectional shocks as independent, and we do not model the transmission across borders explicitly. This assumption is aligned with the modelling approach where each country's shocks are not directly influenced by shocks in other countries contemporaneously. This simplification ensures the model's tractability and interpretability, especially given the focus on the effects on fintech and bank credit. The constraint of limited data, especially the time dimensions, further restricts our ability to adopt more sophisticated modelling techniques that could potentially capture cross-country interdependencies. For instance, methods like Global VAR (GVAR) or other multi-country econometric models which are adept at capturing such dynamics require a more extensive dataset as well as additional identifying assumptions to yield reliable estimates. For a discussion of challenges and potential biases introduced by the absence of cross-country interdependencies in PVAR models see Canova and Ciccarelli (2013).Thedeterministicpartofthemodelincludescountryfixedeffects(c),whilethenumberoflags(/)issetto1.TheoptimallagselectioncriteriafollowsAndrewsandLu(2001).Table3belowpresentstheresultsfromthefirst-,second-,third-,andfourth-orderPVARmodelsusingthefirstfourlagsoftheendogenousvariablesasinstruments.Forthefourth-orderpanelVARmodel,onlythecoefficientofdetermination(CD)iscalculatedbecausethemodelisjust-identified.Thefirst-orderPVARisthepreferredmodelbecauseithasthesmallestMBIC,MAIC,andMQIC.Foralagequalto1alsotheCDisminimized.While we also want to minimize Hansen,s J statistic, it does not correct for the degrees of freedom in the model like the MMSC by Andrews and Lu (2001).Thechoiceofthedeterministiccomponent(constantvstrend)hasbeenverifiedbytestingthejointhypothesisofboththerankorderandthedeterministiccomponent(so-calledPantulaprinciple).BeforeperformingtestsonthePVARmodel,wehaveanalysedGrangercausalityamongthezctvariables,focusingonfintechcreditinparticular.Grangertestsverifyifthe×variableisusefulinpredictingthevaluesofanothervariabley,conditionalonpastvaluesofy,thatis,whether%,Granger-causes,y(Granger1969).ThiscanbeimplementedasseparateWaldtestswiththenullhypothesisthatthecoefficientsonallthelagsofanendogenousvariablearejointlyequaltozero;thus,thecoefficientsmaybeexcludedinanequationofthePVARmodel.LagselectionTable3LagsCDJJpvalueMBICMAICMQIC10.86133.590.05-442.86-92.41-228.1620.9756.130.92-328.17-87.87-185.0330.9822.230.96-169.92-49.77-983540.961Thesampleincludes19countriesovertheperiod2005-2020.DataWinsorisedatthe5thand95thpercentiles.Sources:Cornellietal(2023);BIS;nationaldata;Authors'calculations.Table4belowshowsthetestonwhetherthecoefficientsonthelagsofeachvariablearezero.Forexample,theteststhatthechangesinbankcreditormonetarypolicyinterestratesdonotGranger-causethechangeinthelogarithmofthepropertypriceindexarerejectedatthe95%confidencelevel.Interestingly,whilefintechcreditdoesnotGrangercausethepropertypriceindex,itGrangercausesCPIprices,bankcreditandtheshorttermrate.FintechcreditmarginallyGrangercausesrealGDP(p-value0.13)alsoinconsiderationofitsstilllimitedmacroeconomicimpact.PVARGrangertestTable4Equation/excludedLn(propertypriceindex)Ln(realGDP)Ln(CPI)Ln(bankcredit)Ln(fintechcredit)shorttermrate(N毛p-value(N写p-value(N毛p-value(NWp-valueOl毛王p-value(N毛*gQ.Ln(propertypriceindex)0.010.9113.210.001.010.320.110.7713.410.00Ln(realGDP)0.110.710.010.970.410.540.610.452.510.12Ln(CPI)2.510.126.910.016.910.011.010321.010.32Ln(bankcredit)7.110.01,109.910.001.310.262.510.121.610.20Ln(fintechcredit)0.010.892.310.133.110.086.110.013.410.07shorttermrate4.310.048.210.001.010.326.410.010.210.64All26350.00I145.650.0027.150.0028.450.004.350.5018.450.00ThenullhypothesisofthetestisthattheexcludedvariabledoesnotGranger-causetheequationvariable.1Thesampleincludes19countriesovertheperiod2005-2020.DataWinsorisedatthe5thand95thpercentiles.Sources:Authors*calculations.AftercheckingforthestabilityofthePVAR(seeFigureAlintheAppendix),wecalculateorthogonalizedImpulseResponseFunctions(IRFs)andForecastErrorVarianceDecompositions(FEVDs).OrthogonalizedIRFsandFEVDsmaychangedependingonhowtheendogenousvariablesareorderedintheCholeskydecomposition.Specifically,theorderingconstrainsthetimingoftheresponses:shocksonvariablesthatcomeearlierintheorderingwillaffectsubsequentvariablescontemporaneously,whileshocksonvariablesthatcomelaterintheorderingwillaffectonlythepreviousvariableswithalagofoneperiod.BecausetheorderingofvariablesislikelytoaffectorthogonalizedIRFsandtheinterpretationoftheresults,inaccordancewiththetheory,weorderthevariablesasfollows:pk,Y,p,L,F,i.Theinterestrateisorderedlast,soitreactstoallvariableswithinoneyear.ThischoiceisguidedbytheliteraturethatanalysestheeffectivenessofmonetarypolicyshocksusingVARmodels.Graph1reportstheIRFs.ConfidenceintervalsarecalculatedusingMonteCarlosimulationwithp-valuebandsof90%.TheIRFssuggestthatwhileamonetarytighteninghasanegativeeffectonassetpricesandbankcredit,fintechcreditremainsunaffected.A1.1percentagepointincreaseinthemonetarypolicyrate(topleftpanel)isassociatedwitha0.5percentdeclineinassetpricesafterthefirstyearand0.4inthesecondyear(bottomrightpanel).Theeffectbecomesstatisticallynotdifferentfromzerofromthethirdyearonwards,whenalsotheinterestratereturnstowardsthebaseline.Bankcreditdropssignificantlyasaneffectofthemonetarypolic

    注意事项

    本文(国际清算银行-金融科技与银行信贷:他们对货币政策有何反应?(英)-2023.12_市场营销策划_重点.docx)为本站会员(夺命阿水)主动上传,课桌文档仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知课桌文档(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-1

    经营许可证:宁B2-20210002

    宁公网安备 64010402000986号

    课桌文档
    收起
    展开