电磁场与电磁波实验资料报告材料.doc
word电磁场与电磁波实 验 报 告实验名称:有限差分法解电场边值问题实验日期:姓 名:学 号:11 / 12问题述如如下图无限长的矩形金属导体槽上有一盖板,盖板与金属槽绝缘,盖板电位为U0,金属槽接地,横截面如下列图,试计算此导体槽的电位分布。参数说明:a=b=10m,=100v实验要求1) 使用别离变量法求解解析解;2) 使用简单迭代发求解,设两种情况分别求解数值解;3) 使用超松弛迭代法求解,设确定松弛因子。求解过程一、 别离变量法求解因为矩形导体槽在z方向为无限长,所以槽电位函数满足直角坐标系中的二维拉普拉斯方程。根据边界条件可以确定解的形式:利用边界条件求解系数。简单迭代法求解二、 有限差分法有限差分法Finite Differential Method是基于差分原理的一种数值计算法。其根本思想:将场域离散为许多小网格,应用差分原理,将求解连续函数的泊松方程的问题转换为求解网格节点上的差分方程组的问题。泊松方程的五点差分格式当场域中得到拉普拉斯方程的五点差分格式图1-4 高斯赛德尔迭代法差分方程组的求解方法(1) 高斯赛德尔迭代法 (1-14)式中:· 迭代顺序可按先行后列,或先列后行进展。· 迭代过程遇到边界节点时,代入边界值或边界差分格式,直到所有节点电位满足为止。2超松弛迭代法 (1-15)式中:加速收敛因子可见:迭代收敛的速度与有明显关系(一) 简单迭代法简单迭代法程序:1) 步长=1clear all;clc;close all;%设置节点数,步长1hx=11;hy=11;v1=ones(hy,hx);%设置边界条件v1(hy,:)=ones(1,hx)*100;v1(1,:)=zeros(1,hx);v1(1:hy,1)=0;v1(1:hy,hx)=0;%初始化v2=v1;maxt=1;t=0;k=0;%while(maxt>1e-10)k=k+1; %计算迭代次数maxt=0;for i=2:hy-1for j=2:hx-1v2(i,j)=(v1(i,j+1)+v1(i+1,j)+v2(i-1,j)+v2(i,j-1)/4;%拉普拉斯方程差分形式t=abs(v2(i,j)-v1(i,j);if(t>maxt) maxt=t;endendendv1=v2;end%可视化显示subplot(1,2,1),mesh(v2); %画电势的三维曲面图axis(0 ,11,0,11,0,100);title('步长=1,各点电位');subplot(1,2,2),contour(v2); %画等势线title('等位线');实验结果:图1,简单迭代法结果,步长1步长1,迭代次数k = 246各节点电位数据:0000000000000000000025000000000010010010010010010010010010002)实验结果:步长0.1,迭代次数k = 20051局部实验结果数据截图:(二) 超松驰迭代法1. 理论最优松弛因子实验结果实验程序:clear all;clc;close all;hx=101;hy=101; m=100;n=100;v1=ones(hy,hx);%设置边界条件v1(hy,:)=ones(1,hx)*100;v1(1,:)=zeros(1,hx);v1(1:hy,1)=0;v1(1:hy,hx)=0;%计算松弛因子t1=sin(pi/(100);w=2/(1+t1);%初始化v2=v1;maxt=1;t=0;k=0;%while(maxt>1e-10) k=k+1; %计算迭代次数 maxt=0; for i=2:hy-1 for j=2:hx-1 v2(i,j)=v1(i,j)+(v1(i,j+1)+v1(i+1,j)+v2(i-1,j)+v2(i,j-1)-4*v1(i,j)*w/4;%拉普拉斯方程差分形式 t=abs(v2(i,j)-v1(i,j); if(t>maxt) maxt=t;end end end v1=v2; end%可视化显示subplot(1,2,1),mesh(v2); %画电势的三维曲面图axis(0 ,101,0,101,0,100);title('超松弛迭代法各点电位');subplot(1,2,2),contour(v2,20); %画等势线title('等位线');%disp('超松弛迭代步长0.1,迭代次数');kdisp('松弛因子');w%最优松弛因子获得的实验结果:图4,最优松弛因子得到的结果超松弛迭代步长0.1,迭代次数k = 491松弛因子w =2. 迭代法最优松弛因子确实定实验程序:clear all;clc;close all;count=zeros(1,19); tem=1; hx=101; hy=101; m=100; n=100; v1=ones(hy,hx); % % %设置边界条件 v1(hy,:)=ones(1,hx)*100; v1(1,:)=zeros(1,hx); v1(1:hy,1)=0; v1(1:hy,hx)=0; %初始化 v2=v1; maxt=1; t=0; k=0; % while(maxt>1e-10) k=k+1; %计算迭代次数 maxt=0; for i=2:hy-1 for j=2:hx-1 v2(i,j)=v1(i,j)+(v1(i,j+1)+v1(i+1,j)+v2(i-1,j)+v2(i,j-1)-4*v1(i,j)*w/4;%拉普拉斯方程差分形式 t=abs(v2(i,j)-v1(i,j); if(t>maxt) maxt=t;end end end v1=v2; end%count(tem)=k;tem=tem+1;endw=1.8:0.01:1.98;figure(1);plot(w,count);axis(1.80,2.00,400,2700);xlabel('松弛因子');ylabel('迭代次数');title('最优松弛因子的选取');实验结果:图5,松弛因子的取值图6,相应的迭代次数迭代次数随松弛因子的变化曲线:图7,迭代次数随松弛因子变化曲线实验结果分析:通过松弛因子的迭代选取,发现最优松弛因子在1.94左右,相应的迭代次数为499次,而理论值为1.9391,迭代次数为491,说明实验结果比拟准确,理论与实际相符合。实验总结:通过本次实验发现有限差分法和别离变量法都能很好的解决电场边值问题,在使用有限差分法求解时,网格划分越细,求解的结果越准确,在超松弛迭代法计算边值问题求解时,松弛因子的选取直接关系到求解问题的时间复杂度。所以,在使用超松弛因子迭代法计算边值问题时,一定要合理选取松弛因子。