欢迎来到课桌文档! | 帮助中心 课桌文档-建筑工程资料库
课桌文档
全部分类
  • 党建之窗>
  • 感悟体会>
  • 百家争鸣>
  • 教育整顿>
  • 文笔提升>
  • 热门分类>
  • 计划总结>
  • 致辞演讲>
  • 在线阅读>
  • ImageVerifierCode 换一换
    首页 课桌文档 > 资源分类 > DOCX文档下载  

    毕业设计机械手外文翻译.docx

    • 资源ID:1161617       资源大小:213.06KB        全文页数:21页
    • 资源格式: DOCX        下载积分:5金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要5金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    毕业设计机械手外文翻译.docx

    外文翻译译文题目一种与移动机械臂的局部零件所受载荷相协调的运动结构(2)原稿题目AkinematicallyCOmPatibleframeworkforCOoPeratiVePaylOadtransportbySonholonomicmobilemanipulators(2)原稿出处AUtOnRobot(2006)21:227-242Akinematicallycompatibleframeworkforcooperativepayloadtransportbynonholonomicmobilemanipulators(2)M.Abou-Samah1,C.P.Tang2,R.M.Bhatt2andV.Krovi2(1) MSCSoftwareCorporation,AnnArbor,Ml48105,USA(2) MechanicalandAerospaceEngineering,StateUniversityofNewYorkatBuffalo,Buffalo,NY14260,USAReceived:5August2005Revised:25May2006Accepted:30May2006Publishedonline:5September2006AbstractInthispaper,weexaminethedevelopmentofakinematicallycompatiblecontrolframeworkforamodularsystemofwheeledmobilemanipulatorsthatcanteamuptocooperativelytransportacommonpayload.Eachindividuallyautonomousmobilemanipulatorconsistsofadifferentially-drivenWheeledMobileRobot(WMR)withamountedtwodegree-of-freedom(d.o.f)revolute-jointed,planarandpassivemanipulatorarm.Thecompositewheeledvehicle,formedbyplacingapayloadattheend-effectorsoftwo(ormore)suchmobilemanipulators,hasthecapabilitytoaccommodate,detectandcorrectbothinstantaneousandfiniterelativeconfigurationerrors.Thekinematica11y-compatib1emotion-planning/controlframeworkdevelopedhereisintendedtofacilitatemaintenanceofallkinematic(holonomicandnonholonomic)constraintswithinsuchsystems.Givenanarbitraryend-effectortrajectory,eachindividualmobi1e-manipu1ator,sbi-levelhierarchicalcontrollerfirstgeneratesakinematically-feasibledesiredtrajectoryfortheWMRbase,whichisthentrackedbyasuitablelower-levelposturestabilizingcontroller.Twovariantsofsystem-levelcooperativecontrolschemesleader-followeranddecentralizedcontrolarethencreatedbasedontheindividualmobi1e-manipuIatorcontrolscheme.Bothmethodsareevaluatedwithinanimplementationframeworkthatemphasizesbothvirtualprototyping(VP)andhardware-in-the-loop(HIL)experimentation.Simulationandexperimentalresultsofanexampleofatwo-modulesystemareusedtohighlightthecapabilitiesofareal-timelocalsensor-basedcontrollerforaccommodation,detectionandcorectionofrelativeformationerrors.KeywordsCompositesystem-Hardware-in-the-loop-MobilemanipuIator-Physicalcooperation-Redundancyresolution-VirtualprototypingKinematiccollaborationoftwomobilemanipulatorsWenowexaminetwovariantsofsystem-levelcooperativecontrolschemes-leader-followeranddecentralizedcontrol-thatcanbecreatedbasedontheindividualmobi1e-manipu1atorcontrolscheme.1.eader-followerapproachThefirstmethodofmodelingsuchasystemconsidersthemidpointofthemobilebase(MPB)ofthemobi1e-manipuIatorBtoberigidlyattachedtotheend-effectorofmobilemanipulatorA,asdepictedinFig.4.Figure4(b)depictshowtheend-effectorframe用ofMPAisrigidlyattachedtotheframeatMPB(separatedbyaconstantrotationangle).co0anj3Xg0Yt(15)Fig.4Schematicdiagramsoftheleader-followerscheme:(a)the3-linkmobilemanipulatorunderanalysis,and(b)thetwo-modulecompositesystem(*),玦),g(2),MPBnowtakesontheroleoftheleaderandcanbecontrolledtofollowanytrajectorythatisfeasibleforaWMR.Hence,givenatrajectoryoftheleaderMPBand the preferred manipulator configuration of(" M(e)(5) can be rewritten as:X,_co8XYi=sin/5cob0Y;三inco-rfcc4-in,rfLj+Lcos÷Ljco空1.ISm%+"三nC0Sinyc07-smqi323-Lsin11.11三)÷Ljc03Ljcott0|彳(16)andcorrespondinglyEqs.(6)-(8)as:(17)(部三(2)'+M)'xi-jx(%7rco也Thus,thetrajectoryofthevirtual(reference)robotforthefollowerMPA(Xf,'F",C"Iv<f).u4C),andthederivedvelocitiescannowbedetermined.Thisformstheleader-followerschemeusedforthecontrolofthecollaborativesystemcarryingacommonpayload.DecentralizedapproachThesecondapproachconsiderstheframeattachedtoapointofinterestonthecommonpayloadastheend-effectorframeofboththeflankingmobilemanipulatorsystems,asdepictedinFig.5.Thus,adesiredtrajectoryspecifiedforthispayloadframecanthenprovidethedesiredreferencetrajectoriesforthetwomobileplatformsusingthesimilarframeworkdevelopedintheprevioussectionbytaking人工3=°and0*')°,wherek=A,B.ThispermitsEq.(5)toberewrittenas:气4AilkYieo4-4coV一mVsin/cosFig. 5 Decentralizedcontrolschemeimplementationpermitsthe(a)compositesystem;tobetreatedas(b)twoindependent2-linkmobilemanipulatorsS=慧),½=(¾),÷ (tvi),kd v 上 W * Yd(k×iVandcorrespondinglyEq.(6)-(8)as:(19)Eachtwo-linkmobilemanipulatornowcontrolsitsconfigurationwithreferencetothiscommonend-effectorframemountedonthepayload.However,thelocationsoftheattachmentsofthephysicalmanipulatorswithrespecttothepayloadreferenceframemustbeknownapriori.ImplementationframeworkWeexaminethedesignanddevelopmentofatwo-stageimplementationframework,showninFig.6,thatemphasizesbothvirtualprototyping(VP)basedrefinementandhardware-in-1he-1oop(HIL)experimentation.Fig. 6 ParadigmforrapiddevelopmentandtestingofthecontrolschemeonvirtualandphysicalprototypesVirtualprototypingbasedrefinementInthefirststage,weemployvirtualprototyping(VP)toolstorapidlycreate,evaluateandrefineparametricmodelsoftheoverallsystemandtestvariousalgorithmsinsimulationwithinavirtualenvironment.3DsolidmodelsofthemobileplatformsandthemanipulatorsofinterestarecreatedinaCADpackage,andexportedwiththeircorrespondinggeometricandmaterialpropertiesintoadynamicsimulationenvironment.Figure7(a)showsanexampleoftheapplicationofsuchframeworkforsimulatingthemotionofamobileplatformcontrolledbyanalgorithmimplementedinSimulink.However,itisimportanttonotethattheutilityofsuchvirtualtestingislimitedby:(a)theabilitytocorrectlymodelandsimulatethevariousphenomenawithinthevirtualenvironment;(b)thefidelityoftheavailablesimulationtools;and(c)ultimately,theabilityofthedesignertocorrectlymodelthedesiredsystemandsuitablyinterprettheresults.Fig. 7 AsingleWMRbaseundergoingtestingwithinthe(a)virtualprototypingframework;and(b)hardware-in-the-loop(HIL)testingframeworkHardware-in-the-loopexperimentationWeemployahardware-in-the-loop(HIL)methodologyforrapidexperimentalverificationofthereal-timecontrollersontheelectromechanicalmobilemanipulatorprototypes.EachindividualWMRisconstructedusingtwopoweredwheelsandtwounactuatedcasters.Conventionaldisc-typerearwheels,poweredbygear-motors,arechosenbecauseofrobustphysicalconstructionandeaseofoperationinthepresenceofterrainirregularities.Passiveballcastersarepreferredoverwheelcasterstosimplifytheconstraintsonmaneuverabilityintroducedbythecasters.Themountedmanipulatorarmhastwopassiverevolutejointswithaxesofrotationparalleltoeachotherandperpendiculartothebaseofthemobileplatform.Thefirstjointisplacedappropriatelyatthegeometriccenterontopframeoftheplatform.Thelocationofthesecondjointcanbeadjustedtoanypositionalongtheslottedfirstlink.Thesecondlinkitselfisreducedtoaflatplatesupportedbythesecondjoint.Eachjointisinstrumentedwithopticalencoderthatcanmeasurethejointrotations.Thecompletelyassembledtwo-linkmobilemanipulatorisshowninFig.1.(c).Thesecondmobilemanipulator(seeleftmoduleofFig.1(b)and(d)employsthesameoveralldesignbutpossessesamotoratthebasejointofthemountedtwo-linkarm.Themotormaybeusedtocontrolthejointmotionalongapredeterminedtrajectory(whichcanincludebraking/holdingthejointatapredeterminedposition).Whenthemotorisswitchedoffthejointnowrevertstoapassivejoint(withmuchgreaterdamping).Themotorisincludedforpermittingfutureforce-redistributionstudies.Inthispaper,however,themotorisusedsolelytolockthejointpreventself-motionsofthearticulatedlinkageforcertainpathologicalcases(Bhattetal.,2005;TangandKrovi,2004).PWrM-OUtputmotordrivercardsareusedtodrivethegearmotors;andencodercardsmonitortheencodersinstrumentingthevariousarticulatedarms.ThisembeddedcontrollercommunicateswithadesignatedhostcomputerusingTCP/IPforprogramdownloadanddatalogging.ThehostcomputerwithMATLAB/Simulink/RealTimeWorkshop"providesaconvenientgraphicaluserinterfaceenvironmentforsystem-levelsoftwaredevelopmentusingablock-diagrammaticlanguage.Thecompiledexecutableisdownloadedoverthenetworkandexecutesinreal-timeontheembeddedcontrollerwhileaccessinglocallyinstalledhardwarecomponents.Inparticular,theabilitytoselectivelytestcomponents/systemsatvariouslevels(e.g.individualmotors,individualWMRsorentiresystems)withoutwearingoutcomponentsduringdesigniterationswasveryuseful.Figure7(b)illustratestheimplementationofsuchasystemononeoftheWMRs.Numerouscalibration,simulationandexperimentalstudiescarriedoutwiththisframework,attheindividual-levelandsystem-level,arereportedinAbou-Scimah(2001).ExperimentalresultsForthesubsequentexperiments,2weprescribetheinitialconfigurationofthetwo-modulecompositesystem,asshowninFig.8.Specifically,wepositionthetwoWMRSsuchthatMPAislocatedatarelativepositionof工一O.OOjdjOin.)y=0.61m124in.,ancjwt1arelativeorientationdifferenceof=0.00owithrespecttoMPB.Forfixedlink-lengthsthisinherentlyspecifiesthevaluesofthevariousconfigurationanglesasshowninTable1.Table1Parametersfortheinitialconfigurationofthetwo-modulecompositewheeledsystem(seeFig.8fordetails)LinklengthsofthearticulationL10.28m(11in)L20.28m(11in)RelativeanglesoftheconfigurationofthearticulationL30.28m(11in)1333.98°2280.07o3337.36oOffsetbetweenthewheeledmobilebases1128.59o0.00oObOax0.00m(0in)0.61m(24in)Fig.8Initialconfigurationofthetwo-modulecompositewheeledsystem1.eader-followerapproachAstraightlinetrajectoryatavelocityof0.0254m/sisprescribedfortheleader,MPB.Givenadesiredconfigurationofthemanipulatorarm,thealgorithmdescribedinSection4.1isusedtoobtainadesiredtrajectoryforMPA.AlargedisruptionisintentionallyintroducedbycausingoneofthewheelsofMPAtorunoverabump,toevaluatetheeffectivenessofthedisturbanceaccommodation,detectionandcompensation.Theresultsareexaminedintwocasescenarios-CaseA:MPAemploysodometricestimationforlocalizationasseeninFig.9,andCaseB:MPAemployssensedarticulationsforIocalizationasseeninFig.10.Ineachofthesefigures,(a)presentstheoveral1(Xu,u)-trajectoryofMofMPAwithrespecttotheend-effectorframe£(thatisrigidlyattachedtothe.ofMPB)while(b),(c)and(d)presenttherelativeorientationdifference,differenceanddifferenceasfunctionsoftime.Furtherinbothsetsoffigures,the'Desired'(-line)isthedesiredtrajectorytypicallycomputedoffline;and*Actual,(-o-line)thesystem,asdeterminedbypost-processingthearticulations.is the actual trajectory followed by measurements of the instrumentedHowever,inFig.9,the(-x-line)representstheodometricestimatewhileinFig.10itFig.9 Ca se A: Odom etric Estim ation ofFrame M, used in the controI of MP A followi(which therefore coincides with the 'Actual'stands for the articulation based estimate后恐Iused for control of MPA J with respect to MP B in a leader-follower approach is able to detect and correct non-systematic errors suchFig. 10ArticulationEstimation ofCase B: based Frame M,g MPBin a leader -follow(d)erapproach,isunabletodetectnon-systematicerrorssuchaswheel-slip,(a)XYtrajectoryofFrameM;(b)OrientationversusTime;(c)XpositionofFrameMversusTime;and(d)YpositionofFrameMversusTimeaswheel-slip,(a)XYtrajectoryofFrameM;(b)OrientationversusTime;(c)XpositionofFrameMversustime;and(d)YpositionofFrameMversustimeInCaseA,theintroductionofthedisruptioncausesadriftintherelativeconfigurationofthesystemwhichremainsundetectedbytheodometricestimation.Further,asseeninFig.9,thisdrifthasatendencytogrowifleftuncorrected.However,asseeninFig.i0,thesystemcanusethearticulation-basedestimation(CaseB)tonotonlydetectdisturbancestotherelativeconfigurationbutalsotosuccessfullyrestoretheoriginalsystemconfiguration.DecentralizedcontrolapproachInthisdecentralizedcontrolscenario,astraightlinetrajectorywithavelocityof0.0254m/sispresentedforthepayloadframe.Asintheleader-followerscenario,alargedisruptionisintroducedbycausingoneofthewheelsofMPAtorunoverabump.ThealgorithmistestedusingtwofurthercasescenariosCaseC:BothmobiIeplatformsemployodometricestimationforlocalizationasshowninFig.1_1,andCaseD:BothmobileplatformsemploysensedarticulationsforlocalizationasshowninFig.2.化、小Fig.11CaseC:OdometricestimationofframesMofMPAandMPB,usedinthecontrolofMPAwithrespecttoMPBinthedecentralizedapproach,isagainunabletodetectnon-systematicerrorssuchaswheel-slip.(a)XYtrajectoryofframeMofMPA;(b)XYtrajectoryofframeMofMPB;(c)Relativeorientation,betweenMPAandMPB,versustime;(d)Xdistance,betweenMPAandMPB,versustime;and(e)Ydistance,betweenMPAandMPB,versustime.(f)Sequentialphotographsofthecorrespondingcompositesystemmotion(astimeprogressesfromlefttorightalongeachrow)Fig.of MP A and MP B with respect to a payload-fixed frame is able to detect and correct non-systematic errors such as wheel-slip, (a) XY trajectory of frame M of MP A; (b) XY trajectory of frame M of MP B; (c) Relative orientation, between MP A and MP B, versus time; (d) X distance, between MP A and MP B, versus time; and (e) Y distance, between MP A and MP B, versus time. (f) Sequential photographs of the corresponding composite system motion (as time progresses from left to right along each row)12CaseD:ArticulationbasedestimaIneachofthesefigures,subplots(a)and(b)presentstheoverall(viVtrajectoriesofframesMofMPAandMPBrespectivelywithrespecttotheirinitialposes.Subplots(c),(d)and(e)presenttherelativeorientationdifference,differenceanddifferenceofframes册ofMPAandMPBrespectivelyasfunctionsoftime.Furtherinbothsetsoffigures,the'Desired'(-line)isthedesiredtrajectorytypicallycomputedoffline;and4Actual,(-o-line)istheactualtrajectoryfollowedbythesystem,asdeterminedbypost-processingthemeasurementsoftheinstrumentedarticulations.However,inFig.LI,the(-x-line)representstheodometricestimatewhileinFig.12itstandsforthearticulationbasedestimate.InCaseC,bothmobileplatformsusetheodometricestimationforlocalization-henceasexpected,Fig.reflectsthefactthatthesystemisunabletodetectorcorrectforchangesintherelativesystemconfiguration.HoweverthedataobtainedfromthearticulationsaccuratelycapturestheexistenceoferrorsbetweentheframesofreferenceofMPBandMPA.Thus,usingthearticulation-basedestimationofrelativeconfigurationforcontrolasinCaseDallowsthedetectionofdisturbancesandsuccessfulrestorationoftheoriginalsystemconfigurationasshowninFig.12.Note,however,whiletherelativesystemconfigurationismaintained,errorsrelativetoaglobalreferenceframecannotbedetectedifbothWMRSundergoidenticalsimultaneousdisturbances.Detectionofsuchabsoluteerrorswouldrequireanexternalreferenceandisbeyondthescopeoftheexistingframework.ConclusionInthispaper,weexaminedthedesign,developmentandvalidationofakinematicallycompatibleframeworkforcooperativetransportofacommonpayloadbyateamofnonholonomicmobilemanipulators.EachindividualmobilemanipulatormoduleconsistsofadifferentiallydrivenwheeledWMRretrofittedwithapassivetworevolutejointedplanarmanipulatorarm.Acompositemultidegree-Of-freedomvehiclesystemcouldthenbemodularIycreatedbyattachingacommonpayloadontheend-effectoroftwoormoresuchmodules.Thecompositesystemallowedpayloadtrajectorytrackingerrors,arisingfromsubsystemcontrollererrorsorenvironmentaldisturbances,tobereadilyaccommodatedwithinthecomplianceofferedbythearticulatedlinkage.TheindividualmobilemanipulatorscompensatedbymodifyingtheirWMRbases,

    注意事项

    本文(毕业设计机械手外文翻译.docx)为本站会员(夺命阿水)主动上传,课桌文档仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知课桌文档(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-1

    经营许可证:宁B2-20210002

    宁公网安备 64010402000986号

    课桌文档
    收起
    展开