欢迎来到课桌文档! | 帮助中心 课桌文档-建筑工程资料库
课桌文档
全部分类
  • 党建之窗>
  • 感悟体会>
  • 百家争鸣>
  • 教育整顿>
  • 文笔提升>
  • 热门分类>
  • 计划总结>
  • 致辞演讲>
  • 在线阅读>
  • ImageVerifierCode 换一换
    首页 课桌文档 > 资源分类 > DOCX文档下载  

    (数据整理)大数据治理的关键技术探讨.docx

    • 资源ID:1167547       资源大小:375.57KB        全文页数:18页
    • 资源格式: DOCX        下载积分:5金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要5金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    (数据整理)大数据治理的关键技术探讨.docx

    (数据整理)大数据治理的关键技术探讨数据是政府、企业和机构的重要资源。数据治理关注数据资源有效利用的众多方面,如数据资产确权、数据管理、数据开放共享、数据隐私保护等。从数据管理的角度,探讨了数据治理中的一项关键技术:数据整理。介绍了以数据拥有者和直接使用者(行业用户)为核心的数据整理的关键技术,包括数据结构化处理、数据质量评估及数据清洗、数据规范化、数据融合与摘取、数据整理的发布共享等。最后,针对加强数据整理方面的研究提出了一些思考。1引言大数据作为一种资源,在政府、大型企业和机构中发挥着越来越重要的作用。随着大数据应用的不断推进,与数据资源的价值提炼、保值和增值密切相关的大数据治理越来越引起人们的重视。大数据治理是一项复杂的工程,它需要在国家、行业、企业等多个层面上开展体系化的建设,技术上包含数据资产确权、数据管理、数据开放共享、数据隐私保护等诸多方面。这些技术面临的挑战多、难度大,很多方面还没有形成被广泛认可的系统化的解决方案。本文从数据管理这一关键环节出发,探讨其中的关键支撑技术:数据整理(datawrangling)。数据整理也叫数据准备,是在挖掘提炼数据价值的过程中进行的前期的数据预处理工作。它看似不足轻重,实则非常重要。有调查研究表明,很多大数据分析任务80%以上的工作花费在数据整理上,这给数据分析带来了巨大的人力成本。很多分析设想因为承担不起前期的数据整理工作而最终被放弃。更重要的是,由于缺少系统性和理论性的支撑,数据整理的质量千差万别,这给数据分析的结果带来了很大的不确定性,大大影响了大数据价值的挖掘与提炼。因此,人们很有必要重视数据整理的研究工作,它是整个数据治理环节中一项重要的基础性工作,但是这项工作在学术界和企业界并没有得到应有的重视。2数据整理概述在数据仓库时代,数据预处理主要指的是抽取、转换和加载(ETL)过程。笔者探讨的数据整理和ETL过程有相似的地方,两者都将多源异构的数据集通过一系列处理和转换,变成想要的输出形式。但二者之间是存在较大差别的,具体如下。针对的用户不同。ETL服务于专业的数据工程师,而数据整理服务于企业内部所有的数据使用者,以对数据处理技术不熟悉的业务用户为主。这些用户虽然缺少数据管理与数据处理知识,但对业务非常熟悉,对数据背后的语义更清楚。他们是企业机构大数据价值发现的主力。如何针对这类业务型数据分析人员的需求和特点,提供高效的数据整理工具,是数据整理技术面临的一大挑战。数据处理的目的不同。数据仓库中的ETL是为了建立数据仓库采用的相对固定的数据处理流水线。数据处理过程一旦建立,整个过程比较静态,很少再变化。数据整理是针对企业业务系统中的问题,动态构建的数据处理过程。它针对具体问题进行数据预处理,针对不同问题采用不同的数据整理过程,一些任务之间可以共享某些数据整理过程。数据处理的对象不同。ETL处理的数据对象多为业务系统数据库中的结构化数据源,这些数据源有很规范的元数据。数据整理则面临更复杂、更多样化的数据源,直接应对大数据多样性(variety)的挑战。这种多源异构性在很多大数据应用中非常常见。数据整理技术通常需要帮助用户将其拥有的数据与外部的一些数据源进行关联和数据融合。融合过程中存在的大量数据质量问题(如数据项缺失、不一致、重复、错位、异常值等)给数据整理带来了巨大挑战。与ETL技术相比,这种变化是一种质的变化。数据整理是为了使数据更好地服务于数据分析而对数据进行的审查和转换的过程,它是整个数据分析流程中最占用精力的过程。从技术上讲,数据整理包含前期数据解析与结构化处理、数据质量评估与数据清洗、数据集成和提纯等过程。由于问题的复杂性,数据整理过程通常不是完全自动化的,而是需要用户介入的反复迭代和交互的过程。数据可视化、用户反馈与交互在整个过程中都发挥了重要作用。数据整理是由数据可视化领域的JefferyHeer教授(华盛顿大学)和数据库领域的JosephM.Hellerstein教授(加州大学伯克利分校)等人较早提出来并持续开展系列研究的。他们还将研究成果进行了产业化,成功创立了以数据整理为主业的Trifacta公司。本文主要在上述两位教授及其合作者发表的一些成果的基础上,对数据整理包含的一些核心要素进一步地阐述,以期引起人们对数据整理研究和应用的重视。3数据整理的核心技术3.1 数据的结构化处理很多数据模型和算法是构建在结构化数据基础上的,多源异构数据要更好地与其他数据集融合,结构化处理是必不可少的过程。数据结构化处理首先要对原始数据进行解析,提取出需要的信息,再进一步将其转换成结构化数据。很多非结构化数据、Web数据是以文本形式存在的,需要使用信息抽取技术识别文本中的实体、属性、关系等信息。也有很多数据采用的是结构化强一些的数据模型,如JSO格式,这类数据相对关系型数据更灵活,在结构化转换过程中也需要一些技术上的处理。结构化处理的主要输出形式是二维表或者图数据,它需要用户确定数据在转换过程中采用的规则。3.2 数据质量评估与数据清洗结构化处理主要是数据表达形式上的转换,数据结构化之后并不意味着能够直接使用。处理后的数据还要进行质量评估,如果发现数据中存在问题,则采取进一步的数据清洗措施。这个过程称作数据质量评估。一些简单的数据质量问题可以利用自动化的算法发现,因为数据质量问题的多样性和不可预测性,数据可视化技术成为数据质量评估的关键技术。借助可视化技术,对数据语义非常了解的业务人员更容易发现数据存在的质量问题(如缺失、不一致、异常等)。伴随着数据质量问题的发现,用户可以定义一些数据清洗规则,批量化地处理数据中存在的质量问题,提高数据清洗的效率。在数据库研究领域,也有人借助众包的思路提升数据清洗的效率。这种做法也是基于用户在数据清洗过程中发挥的重要作用进行的。在数据清洗过程中,需要多轮次的人机交互,系统的交互界面和交互方式对于数据清洗算法的有效性尤为重要。3.3 数据规范化数据清洗还有一项重要的内容是数据规范化,这也是数据准备中常见的问题。规范化有简单的底层数据层面的,如数据类型转换、单位变换、格式表换等,也有较为复杂的数据项规范化处理,如电话号码、邮编、地址等。这类问题的主要成因是自然语言表达上的差异性会造成同一实体存在多种表达形式。比较典型的例子是地址,人们需要对其进行规范化处理,以提升数据的质量。地址的规范化面临的一个比较大的挑战就是粒度的选取,同一个地址可以用不同粒度进行表达。数据的规范化处理需要根据应用的需求特点,确定数据粒度和表达方式。地址规范化处理背后的问题是实体链指问题,即把同一实体的不同表达形式(不同名字)映射到同一个实体名字上,消除实体表达的语义鸿沟,进而通过关联在数据集中不同地方出现的相同语义的实体,达到数据融合的目的。此外,缺失值填充也是数据规范化处理过程中常见的问题。一种处理方式是利用缺失数据的上下文数据,采用数据插值的办法修复缺失数据;另一种处理方式是采用平均值或者缺省值的办法填充缺失数据,有时候也用这种办法替换系统发现的异常值。3.4 数据融合与摘取很多数据价值的发现源自于多源异构数据之间的关联和在关联数据基础之上进行的数据分析。将多个数据集(很可能来自于多个数据源)融合到一起,可使数据内容更丰富,更容易获得新的发现。然而,多源数据融合所需的数据整理过程面临的挑战是很大的。多源头的数据缺少统一的设计,这导致数据集成和数据融合的难度加大。传统的基于模式的数据集成方法很难发挥出大的作用,解决这一难题更多地要从数据项的层面关联数据。因此,实体链指操作在数据融合过程中就显得尤为重要。数据在实体层面的链指可以丰富实体的语义,建立跨数据项之间的关联。由于实体表达的模糊性,实体上下文信息对实体链指精度的影响非常大,有效利用实体上下文信息(如文本中的语境、表结构中同行属性值等)是实体链指的关键。数据融合是数据集整合的过程,有些分析任务未必需要全部整合后的数据,可能仅需要一部分数据支撑分析任务。在这种情况下,需要从数据集中提取部分数据(如一些样本或者数据片段),降低数据量,供数据分析模型实现分析操作。这一过程称作数据摘取,它需要根据任务的特点摘取相关数据。3.5 发布共享企业中复杂的数据分析任务经常需要被共享,某些数据整理操作也会被重复使用,这意味着数据整理的操作也是企业机构的一种资源。企业需要将这些操作以脚本的形式物化出来,使其能够被检索、分享和重复利用。经过数据整理过程的数据,其世袭关系需要被记录下来,以确保用户能够追溯数据的来源,也便于利用索引技术检索需要的数据整理操作。企业内部对数据整理的共享对于企业内部知识管理、协同工作而言有很重要的意义。4以技术带动数据治理能力通过以上分析可以看出,数据整理以提升数据分析的效率和质量为目的,在整个大数据分析流程中占有重要的地位。近些年来,尽管学术界在数据质量管理方面做了大量的研究性工作,但在实际应用中,很多数据整理的需求并没有得到很好的满足,还缺少数据整理方面的工具,尤其是系统化的数据整理工具。对于工业界而言,数据整理工作更多地被看作数据分析人员应完成的工作,人们并没有从工具和系统的角度开发设计高效率的数据准备工具,这使得数据分析人员在执行数据整理任务时,执行了大量重复性的工作。因此,加强数据整理的研究和应用工作是很有必要的。4.1 数据的结构化与规范化信息抽取是指从非结构化的文本中识别实体,并发现实体的属性、实体之间的关系,在互联网信息抽取、知识库构建等领域发挥着重要的作用。命名实体识别的目的是发现文档中的各种实体,如人物、地理位置、组织、日期、时间等。命名实体识别技术分为以下3类。基于正则表达式的命名实体识别:把预先定义的正则表达式和文本进行匹配,把符合正则表达式的文本模式都定位出来。基于正则表达式的命名实体识别一般用于识别日期、时间、金额、电子邮件等规则的文本。基于字典的命名实体识别:把文本和字典里的短语,类别对进行匹配,对匹配的短语进行实体标注,一般用于识别人名、地名。基于机器学习模型的命名实体识别:预先对一部分文档进行实体标注,产生一系列的短语,类别对,利用这些文档进行机器学习模型的训练,然后用这个模型对没有遇到过的文档进行命名实体识别和标注。指代消解是自然语言处理中和命名实体识别关联的一个重要问题。比如在对某位专家学者进行的一个访谈中,除了第一次提到其姓名、职务之外,之后提到这位专家,文本中可能使用“某博士”“某教授”“他”等代称,或者以其担任的职务相称,如“所长”等。如果访谈中还提及其他人物,并且也使用了类似的代称,那么把这些代称对应到正确的命名实体上就是指代消解。在自然语言处理中,经常遇到的一个问题是命名实体的歧义,比如重名问题。为了让计算机正确地分析自然语言书写的文本,命名实体的歧义需要被消除,也就是把具有歧义的命名实体唯一地标识出来。关系抽取是信息抽取的一个重要的子任务,负责从文本中识别出实体之间的语义关系。它分为3类方法:有监督的学习方法,该方法包括基于特征向量的学习方法和基于核函数的学习方法;半监督的学习方法,该方法无需人工标注语料库,但是需要根据预定义好的关系类型人工构造出关系实例,将这个关系实例作为种子集合,然后利用Web或者大规模语料库信息的高度冗余性,充分挖掘关系描述模式,通过模式匹配,抽取新的实体关系实例;无监督的学习方法,该方法是一种自底向上的信息抽取策略,它假设拥有相同语义关系的实体对的上下文信息较为相似,其上下文集合代表该实体对的语义关系。较新的技术是使用向量(embedding,基于词或者实体)的方式将结构化和非结构化数据中提及的实体关联起来,利用向量间的相似性,实现以向量为中介的异构数据的结构化处理和关联。4.2 数据集成数据集成是伴随企业信息化建设的不断深入而形成的。例如,因业务的需要,企事业单位内部普遍构建了多个异构的信息系统(这些信息系统可以自主选择合适的操作系统,有独立的数据库和应用界面,完全是一个自治的系统),并积累了图片、Word.PDF、Excek网页等大量非结构化文件。由于开发部门和开发时间的不同,这些信息系统中管理的数据源彼此独立、相互封闭,形成了“信息孤岛”,数据难以在系统之间形成快速有效的共享。数据管理与数据分析需要打破这些“信息孤岛”,实现不同“孤岛”信息系统的互联互通,进而施行精准的决策分析。例如,在电子政务领域中,很多地方的政府机关有多少个委、办、局,就有多少个信息系统,每个信息系统都由独立的信息中心进行维护。政府机关之间需要实现信息互联互通、资源共享,最终实现政务服务的协同操作,从而使社会大众真正享受到一站式办公服务(例如杭州市政府工作报告中的“最多跑一次”改革)。事实上,许多互联网应用(包括机票、酒店、餐饮、租房、商品比价等服务)也是把来自不同数据源中的数据进行有效集成后,对外提供统一的访问服务的。数据集成把一组自治、异构数据源中的数据进行逻辑或物理上的集中,并对外提供统一的访问接口,从而实现全面的数据共享。数据集成的核心任务是将互相关联的异构数据源集成到一起,使用户能够以透明的方式访问这些数据源。集成是指维护数据源整体上的数据一致性,提高信息共享利用的效率;透明的方式是指用户无需关心如何实现对异构数据源数据的访问,只关心以何种方式访问何种数据即可。数据集成涉及的数据源通常是异构的,数据源可以是各类数据库,也可以是网页中包含的结构化信息(例如表格)、非结构化信息(网页内容),还可以是文件(例如结构化CSV文件、半结构化的XML文件、非结构化的文本文件)等。数据集成中涉及的数据源具有自治性,这些数据源可以在不通知集成系统的前提下改变自身的结构和数据。数据源的异构性和自治性是数据集成系统面临的两个主要挑战。针对这两个挑战,数据集成通常采用如下两种解决方案。(1)数据仓库人们把一组自治数据源中的数据加载并存储到一个物理数据库(称为数据仓库)中,然后在数据仓库上对集成后的数据进行后续的操作和分析。图1显示了基于数据仓库的数据集成系统架构。数据仓库技术涉及的技术包括ETL、元数据管理和数据仓库本身涉及的技术。ETL定期地从各个数据源中抽取(extract)转换(transform)、加载(load)数据到数据仓库中。元数据管理涉及对数据源的描述、对数据仓库中数据的描述、数据仓库中数据与数据源中数据之间的语义映射。例如,针对关系数据库类型的数据源,语义映射维护数据源中的某个属性对应于数据仓库的某个属性,并指定如何把属性分配到不同的表中。此外,语义映射还要解决不同数据源间数据描述的不统一、语义冲突、数据的冗余等问题。图1基于数据仓库的数据集成系统架构(2)虚拟集成系统在虚拟集成系统中,数据保存在原来的数据源中,只在查询时才需要访问。图2显示了一个典型的虚拟集成系统的架构,该类集成系统使用中间模式建立全局数据的逻辑视图,中间模式向下协调各数据源系统,向上为访问集成数据的应用提供统一数据模式和数据访问的通用接口。各数据源独立性强,虚拟集成系统则主要为异构数据源提供高层次的数据访问服务。元数据维护数据源的基本信息以及中间模式到数据源之间的语义映射等。虚拟集成系统接收到用户的查询请求后,根据元数据信息进行查询的重写,把对中间模式的查询转化为对数据源的查询。类似于数据库的查询处理,虚拟集成系统也会进行查询的优化,包括访问数据源的顺序、不同数据源之间的操作访问(例如两个数据源之间数据的连接算法)等。每个数据源都连有一个封装器,负责把上层用户的查询转发到数据源,并把数据源返回的结果转发给上层的应用o虚拟集成系统的关键问题是如何构造逻辑视图,并使得不同数据源的数据模式映射到这个中间模式上。数据应用报表即席查询数据挖掘数据分析数据集成源映映射J源蹴映射J源娄侬£映中间模式T.源数姿映射,数据源数据库数据库XMLHTML数据源2数据源3数据源4-访问-元数据中间模式图2基于中间模式的数据集成系统架构无论是基于数据仓库还是基于中间模式的数据集成系统,都需要完成实体与关联抽取、模式匹配(schemamatching)、实体对齐(recordlinkage或entityresolution)和实体融合(datafusion)这4个步骤。面向结构化数据的实体与关联抽取技术比较直观,而向非结构化数据的实体与关联抽取可参考第4.1节。模式匹配主要用于发现并映射两个或多个异构数据源之间的属性对应关系,在大规模数据背景下尤为重要。目前,基于朴素贝叶斯、StaCking等机器学习算法的模式匹配得到了广泛的研究,并在某些特定领域得到了良好的应用。基于模式匹配,实体对齐的目标是根据匹配属性的记录特征,将数据源中指代同一实体的记录连接起来。实体对齐主要分为3个步骤:获取候选集、成对匹配、聚簇处理。广义地说,实体对齐的方法可以划分为无监督学习和有监督学习。随着人工智能技术的发展,基于决策树、LOgiStiC回归、支持向量机(supportvectormachine,SVM)的机器学习方法以及基于词向量(wordembedding)的深度学习方法被应用于实体对齐,以提高算法的性能。使用实体对齐可以把一组数据源中同一实体的不同记录连接起来,由于数据质量问题,这些记录在描述同一实体时可能存在数据冲突,例如同一个人的住址在不同数据源之间的描述可能是不一样的。因此,在数据集成的最终环节中,实体融合旨在消除不同数据源之间同一个实体属性值的冲突,将不同的数据信息进行综合,从而提取出统一、丰富、高精度的数据。实体融合的主要方法包括基于规则的无监督学习、结合标注数据的半监督学习等。虽然基于标注数据的半监督学习在精度、召回率等方面均获得了令人满意的效果,但是其最大的挑战在于带标签训练数据的获取往往需要耗费较大的人力和物力。如何利用主动学习获取训练数据以降低研究代价,是当前学术界和工业界研究的热点话题。4.3 数据清洗与数据质量评估数据清洗是指从数据中检测并纠正可能的错误,以确保数据的质量并符合与领域相关的完整性约束。数据清洗是绝大多数数据驱动的任务的必要步骤。缺乏有效的数据清洗可能会使后续的数据分析产生垃圾进、垃圾出(garbagein,garbageout,GIGO)的不良后果。然而,由于数据越发显著的大规模、异质性、高噪音等特点,数据清洗也面临着极大的挑战,这也是近年来学术界和工业界的攻坚重点。一般来说,数据清洗可以分为两个基本的任务:错误检测,即发现数据中潜在的错误、重复或缺失等;数据修复,即针对发现的错误,对数据进行修复。下面结合一个具体的实例分别进行介绍。错误检测任务旨在发现影响数据质量的错误因素。一般将错误因素划分为4类,下面通过图3的示例进行说明。姓氏名字年龄/岁工作单位所在城市张三40中国人民大学上海李四5上海交通大学上海王五35缺失北京二张40人大北京图3数据清洗中错误检测的示例(1)异常值异常值是指明显不符合属性语义的取值。例如,图3中t2的年龄为5岁,显然与其有工作单位这一事实是相悖的。然而,设计一种方法让计算机自动地、通用地检测出异常值是个挑战性很大的问题。现有的代表性解决方案包含以下几类。基于统计的方法:首先使用一定的分布对数据进行建模,进而检测某个取值是否显著性地偏离正常值。例如,针对图3示例中年龄的例子,可以使用正态分布对数据建模,并计算均值与标准差。如果某个取值在k倍的标准差(如k=3)外,则认定其为异常值。更进一步地,由于均值对异常值比较敏感,很多方法使用中位数作为均值。基于距离的方法:度量数据值之间的距离,将与大多数数据距离过远的值认定为异常值。(2)结构性错误结构性错误是指数据不符合特定领域语义要求的完整性约束。例如图3示例中tl的工作单位是中国人民大学,其所在城市应该为北京,而非上海。检测结构性错误最直接的方法是从外部输入与领域相关的约束条件,如工作单位决定了所在城市。然而,这种方法往往耗时耗力,且很难达到通用性。因此,现有的大多数工作聚焦于从数据中发现潜在的约束条件,如条件函数依赖、拒绝约束规则等。近些年,也有些研究者考虑借助外部通用的知识图谱及互联网上公开可用的众包服务(crowdsourcing),其基本的思想是通过发现数据中与知识图谱或众包标注违背的部分,归纳出结构性错误。(3)记录重复记录重复在真实数据中十分普遍,其原因是多方面的,比如数据可能由不同的机构提供,或者数据整合自组织的内外部渠道。例如,图3中的tl和t4实际上指代同一个人,但由于数据存在结构性错误(如H的城市)、缩写(如t4中的“人大”实为“中国人民大学”的缩写)、属性对应错误(t4中的姓氏与名字填反了)等问题,而被计算机认为是两条不同的记录。记录重复会对数据分析造成很大的影响。人们一般采取实体识别技术解决记录重复问题,其本质与上文提到的实体匹配是相同的。由于前文己经给出了详细的探讨,此处不再赘述。(4)数据缺失数据缺失是指数据的部分属性不存在于数据库中,例如,图3示例中的t3缺失了工作单位信息。这会在两个层面给数据分析带来负面影响:一方面,数据缺失带来信息的损失;另一方面,不同数据源在数据缺失时使用的默认值不尽相同,如“NA”“NaN”“Null”等,这会进一步误导后续的分析过程。针对数据缺失,现有的方法是采用缺失值插补(dataimputation)技术进行修复,其基本想法是使用合理的模型推断出缺失值。比较简单的办法是使用统一的全局值或其他记录在该属性的平均值进行插补,然而这些方法没有考虑具体的数据记录,在实际中难以得到良好的效果。更为有效的办法是采用最大可能性的数据值并进行推理,例如找出最相似记录的相应取值并进行插补,或通过建立贝叶斯或决策树分类器,将缺失值插补建模成一个分类的问题。数据修复任务是指根据检测出的错误对数据进行更新,以达到纠正错误的目的。与前文介绍的错误检测相比,数据修复的挑战性更大,因为通常缺乏对修复进行指导的信号。为了应对这一挑战,现有的方法往往采用外部知识或一些定量的统计指标。最近,也有人提出一些新方法,即采用机器学习的手段融合多源信号,将数据修复建模成一个联合推理的问题。数据整理需要研究的工作还有很多。如何开展有针对性的研究工作,并系统化地集成各方面的相关研究工作,形成数据整理方面整体上的研究和应用影响力?威斯康辛大学麦迪逊分校的AnHaiDoan教授等人倡议,从事相关领域的研究学者应充分利用庞大的Python开源社区PyData,投入系统化的数据准备工具研制中,将研究成果更好地应用在实际场景中。这或许是一条较为可行的技术路线。一、困难重重却充满光明的大数据治理发展之路传统数据治理一直无法逃脱的魔咒大数据治理从建设内容和实施目标上可以划分成不同的阶段,每个阶段完成不同的任务,随着阶段的递进,建设内容逐步加深,不同的企业切入点和诉求也各不相同。大致分为以下几个阶段:摸家底阶段内容:企业元数据梳理和采集目标:构建企业数据资产库建体系内容:建立企业标准和质量提升体系目标:提升数据质量促应用内容:自服务通道、构建企业知识图谱目标:数据智能应用提供数据服务 实现数据价值然而,大数据治理建设之路并不是一帆风顺的,甚至说是充满各种问题和困难,如何管理企业级的数据资产、如何让业务积极参与到数据建设中来、如何降低数据治理的落地难度等一系列问题,一直困扰着数据治理的发展,传统数据治理的问题主要体现在以下几个方面:管理范围窄要做数据治理首先要知道有哪些数据,传统的数据治理往往只管理了数据领域,很少关注业务、管理和开发相关的数据资产,数据管理范围比较窄,而且,受限于技术实现,即使在数据领域的数据资产也很难做到精确管理;业务难结合业务元数据的广泛缺失,导致业务人员无法使用技术性的元数据系统,元数据缺乏业务用户,使用者少;应用场景缺元数据被当成单独的系统,而不是广泛的技术基础,导致只关心元数据本身的应用场景;技术不完善在技术层面存储缺乏扩展性,采集自动程度不高,管理实时性不高。自服务大数据治理是解决问题之道自服务的大数据治理平台具备管理、开发、共享、使用等能力,通过自动、自助、智能化的大数据治理,能够实现对数据的找、供、用、治,从而一站式解决传统数据治理在大数据时代的各种难题,具体涉及到以下几个方面。(1)建好数据管理体系,快速识别数据自服务大数据治理平台可以实现有数据可管理。现在的企业数据资产繁杂众多,特别是建设大数据平台的企业,数据的类型、分布、实现技术、所属部门等都很繁杂,通过手工一点点梳理是不现实的,如何低成本、快速有效地将数据梳理和管理起来?这是做大数据治理遇到的第一个坎。自服务大数据治理平台可以通过自动化手段,自动识别企业数据资产并标明数据方位和属性,建立业务能理解的数据服务目录H议:1 .自动化获取元数据信息通过£3动化采集与斜折手段,建立技木业务过程元«舞的amx.标明蜘e方位.2 .标期18督方位,整理业务H性将蜘e费产按业务同住编目,原理JR据的周性、共享方式.待慢、蝴.3 .建立业务数据身目录以数据资产为5E动方式.实现数年集照映氢建必史EgR名目热(2)建立数据治理体系,监控并快速发现问题自服务大数据治理平台可以保障企业数据资产的质量。企业内数据环境复杂,很容易出现数据不一致、数据不及时、数据缺失等一系列问题,如何识别并快速定位数据问题?特别是针对海量数据,如何在不影响性能情况下找出问题数据?这是做大数据治理遇到的第二个坎。Q数据不么办,JMrA敢挺异常波动?I 0我笊办?BfiK3lX*MS9ffl5.ff- 9l¾¾H . CUHefflSOTlW W-Wff 做答.通过自服务大数据治理平台建立和支撑起基于数据指标、质量检核、问题发现和监控的完善数据治理体系,从事前、事中和事后等各个环节规避、发现和解决数据问题,将能保证数据应用无后顾之忧。ItfiZ:1明确重要监控搞标拂理数灵平台MPP.HadoO评台的西要数辆监控18除与监控需求.2.3立多柔道量控方式对核效抠监控平台.以以B杵、箱信号通知方式告警.(3)建立数据应用体系,共享和高效使用数据自服务大数据治理平台可以实现数据自助应用体系。不论是数据的管理,还是数据的治理,最终的目的都是支持数据的应用。实际的数据应用场景各异、对实时性、数据量、获取方式的要求也不同,如何以最简单的方式建立通道,让需要的人拿到数据?这是做大数据治理的遇到的第三个坎。通过自服务大数据治理平台能够实现数据的自助查找、开发、共享和交换,建立数据共享通道,实现数据的开放应用。批U数振交换?二、大数据治理技术需要不断革新数据治理的目标是把数据管起来、用起来、保证数据质量,这些目标离不开各种技术的支持,这些技术包括元数据自动采集和关联、数据质量的探查和提升、数据的自助服务和智能应用等。1、管起来:数据资产的自动化采集、存储技术要实现大数据治理的资产管理,需要做足三个方面的工作:采集:指从各种工具中,把各种类型的元数据采集进来。存储:采集元数据之后需要相应的存储策略来对元数据进行存储,这需要在不改变存储架构的情况下扩展元数据存储的类型;管理和应用:在采集和存储完成后,对已经存储的元数据进行管理和应用。第一,针对数据资产的存储,模型体系规范为元数据管理提供了基础,通过模型管理可以实现统一稳定的元数据存储,统的标准和规范能很好地解决通用性和扩展性。传统数据资产管理采用CWM规范进行数据资产存储设计,该规范提供了一个描述相关数据信息元数据的基础框架,并为各种元数据之间的通信和共享提供了一套切实可行的标准。但是,随着元数据管理范围的不断扩大,CWM规范已经不能满足通用的元数据管理需求,针对微服务、业务等也需要一套规范支撑。MOF规范位于模型体系最底层,可以为元数据存储提供统一的管理理论基础。第二,元数据管理第二个核心问题是解决各类元数据的采集,由于元数据类型多种多样,而且在不断增加,所以,如何以最小代价,快速纳入管理新类型元数据的能力,是元数据管理的核心。采用可插拔的适配器方式实现元数据的采集是一个很好的选择。其中,数据采集适配器应支持各类数据源的采集,当有一个新的数据源需要接入的时候,只需按照规范快速开发一套针对性的适配器,就能实现新类型元数据的纳入管理。第三,与人工相比,技术的最突出特点是速度快和精确。因此,如何通过技术手段精确地获取数据资产是关键,特别是元数据关系,一般都存在于模型设计工具、ETL工具,甚至开发的SQL脚本中,因此需要通过工具组件解析(接口、数据库)、SQL语法解析等手段完成关系的获取和建立。准确解析后的关系,还需要通过直观的关系图展现出来。2、有保障:数据质量探查和提升技术通过大数据治理来提升数据质量的过程中,涉及到很多环节、工作和技术,其中包括:通过合理的技术找出数据问题并找到问题数据;从各个维度监控数据问题,并能通过最直观和快捷的方式反馈给相关责任人;实现问题发现、认责、处理、归档等数据问题的闭环解决流程等。中间主要涉及到以下两个方面:第一,要想及时全面地找到问题数据,不仅要关注关键点,还要有合适的方法。数据最容易出现质量问题的地方就是数据集成(流动)点,例如:性别在单系统中,有1和O或者男和女表示都行,但是系统间集成时就会有问题。因此,解决数据质量的关键,就在于在集成点检查数据质量。另外,针对大数据量的数据质量检查,即要保证实时性,也要保证不影响业务系统的正常运行,因此在对特别大的数据量进行检查时,要采用抽样检查的方式。第二,数据问题发现后,还要直观地将数据问题展现出来并及时通知相关人员。因此大数据治理平台应提供实时、全面的数据监控,实现多维度实时的数据资产信息展示:从作业、模型、物理资源等各方面进行全面的数据资产盘点;对数据及时性、问题数据量等方面的数据健康环境进行全面的预警。3、用起来:自助化数据服务构建技术大数据治理的最终目标是为最终用户提供数据,这需要快速找到数据,并快速建立数据交换的通道。知识图谱是一种非常好用、直观的数据应用方式。人工智能的知识图谱构建,可以从以下步骤考虑:基于企业元数据信息,通过自然语言处理、机器学习、模式识别等算法,以及业务规则过滤等方式,实现知识的提取;以本体形式表示和存储知识,自动构建成起资产知识图谱;通过知识图谱关系,利用智能搜索、关联查询等手段,为最终用户提供更加精确的数据;基于元数据的自助数据服务开发,可以简单快速地建立数据通道。通过自助化的数据生产线,数据使用方(业务人员)大大减少了对开发人员依赖,80%以上的数据需求,都能通过自己进行整合开发,最终获取数据。让所有用数据的人能方便得到想要的数据。其中,提供所需数据的自助查询能力、自动生成数据服务、及时稳定的获得数据通道、保证数据安全是实现自助化的大数据生产线的四个关键点。三、如何选择合适的大数据治理工具?工欲善其事必先利其器,大数据治理的落地开展离不开工具的支撑。大数据治理工具一般分为两类:一类是单个工具,另一类是集成平台,用于不同的阶段、场景和客户。其中,单独工具有:元数据、数据质量、主数据等,集成平台包括数据资产管理、数据治理平台、自助服务平台等。数据模型管理数据质国管理主数据管理数据资产管理元数据管理数据标准贯理数据治理平台自助数据服务平台下面重点介绍其中两个核心的工具:一个是元数据,另一个是自助数据服务平台;1、大数据治理的核心元数据管理工具元数据是大数据治理的核心,元数据管理工具应该支持企业级数据资产管理,并且从技术上支持各类数据采集与数据的直观展现,从应用上也要支持不同类型用户的实际应用场景,一个合格的元数据管理工具,需要具备以下几项基本能力:首先,元数据要有全面的数据管理能力。无论是传统数据还是大数据,无论是工具还是模板等,都应该是元数据的管理范畴。对于企业来说,要想统一管理所有信息资产,还依靠原来人工录入资产的方式肯定是不行的,企业需要从技术上提供各种自动化能力,实现对资产信息的自动获取,包括自动数据信息采集、自动服务信息采集与自动业务信息采集等,这要求企业使用的数据管理工具支持一系列的采集器,并且多采用直连的方式来采集相关信息。脩力、跖 MXtt其次,尽管元数据是一个基础的管理工具,也需要具备好的颜值和便捷的使用方式,以便给用户带来好的应用感受。作为一款元数据管理工具,能让用户能在一个界面全面了解到元数据信息,通过图像从更多维度、更直观地了解企业数据全貌和数据关系是很重要的。除此之外,通过H5等流行的展现技术实现各浏览器的兼容,支持界面的移植也是元数据管理工具必不可少的能力。再次,元数据管理工具不仅仅是一个工具,还需要关注各类人的使用诉求,跟具体用户的使用场景相结合。对于业务人员来说,通过元数据管理的业务需求管理,能更容易地和技术人员沟通,便于需求的技术落地;对于开发人员来说,通过元数据管理能管控系统的开发上线、提升开发规范性,自动生成上线脚本,降低开发工作难度和出错几率;对于运维人员来说,通过元数据管理能让日常巡检、版本维护等工作变得简单可控,辅助日常问题分析查找,简化运维工作。2、大数据治理的最佳实践自助化数据服务平台大数据治理最终目标不仅仅是为了管理数据,而是为用户提供一套数据服务的生产线,让用户能通过这条生产线自助地找到数据、获得数据,并规范化地使用数据,因此自助化数据服务共享平台是大数据治理必不可少的工具。作为大数据治理的落地工具,自助化数据服务共享平台不仅要为开发者提供一套完整的数据生产线,也需要给运维者提供易用的监控界面,毕竟系统的运维才是工具应用的常态。全局的数据资产监控能力和数据问题跟踪能力同样重要,通过全局的数据资产监控能力,能使客户方便地了解到企业数据共享交换的全貌、系统间的数据关系和数据提供方和消费方的使用情况;通过数据问题跟踪能力,能实现数据问题的智能定位,减少运维工作难度。清费方在成用过任|,. 发败闻消商方遇过平台Jr实体 迸行In怆片桁,发现与其梢关的上给数爆,分析并K喊藏 1«?取、汪净'IrlLDIjffiaMRMt布的TtK从全局了解企业数据情况数据问题智能定位普元在大数据治理领域持续进行投入,元数据产品在大量实施客户的锤炼下不断完善和提升,每个版本都有新能力体现,其中:元数据5完整地支持了数据仓库元数据管理,提供元数据维护、版本、分析等元数据基本能力;元数据6进行了全新内核提升,性能大幅提升,包括检索性能、分析性能;以及覆盖模型工具、ETL工具、数据库、报表工具等最新版本等的全面数据资产管理;元数据7从大数据能力支持、应用场景落地、展现全面升级三方面做了全新改版,以适应新阶段数据治理需求。20172015元数据5及以前支持数谴仓库元数期管理提供元效据基本能力(维 护、版本、分析等)元IS据6全新内核提升性能(检索. 分析)全面政舄资产管理澧通模理工具. ETlH具、数据库.报表工具全面支持I元数据7 .大数据支持 应用场景落地 展现全面升级从单产品、多产品到最终的融合产品,普元数据治理产品满足大数据治理各阶段需求,支持数据管理、数据治理和数据应用。在单产品阶段,我们重点关注在基础能力上面,把元数据自动化采集能力覆盖到业界各种常用工具,并在核心的数据关系解析方面做了深入的研究和落地,保证

    注意事项

    本文((数据整理)大数据治理的关键技术探讨.docx)为本站会员(夺命阿水)主动上传,课桌文档仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知课桌文档(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-1

    经营许可证:宁B2-20210002

    宁公网安备 64010402000986号

    课桌文档
    收起
    展开