欢迎来到课桌文档! | 帮助中心 课桌文档-建筑工程资料库
课桌文档
全部分类
  • 党建之窗>
  • 感悟体会>
  • 百家争鸣>
  • 教育整顿>
  • 文笔提升>
  • 热门分类>
  • 计划总结>
  • 致辞演讲>
  • 在线阅读>
  • ImageVerifierCode 换一换
    首页 课桌文档 > 资源分类 > DOCX文档下载  

    生产要素拥挤的理论内涵.docx

    • 资源ID:1190694       资源大小:75.86KB        全文页数:13页
    • 资源格式: DOCX        下载积分:5金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要5金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    生产要素拥挤的理论内涵.docx

    生产要素拥挤的理论内涵资助项目:国家自然科学基金(70172035)和吉林大学哲学社会科学研究项目(2003SZ007)作者陆介:孙巍(1963),男,吉林省吉林市人,吉林大学数量经济研究中心(吉林大学商学院)教授、博士生 导师,研究方向:数量经济学;尚阳(1980),男,辽宁省沈阳市人,吉林大学数量经济研究中心硕士研究生;何彬 (1979),男,云南省昆明市人,吉林大学数量经济研究中心博士研究生。摘要:生产要素的拥挤状态描述了生产过程中生产要素间的一种无效配置状态。在投入要素的等产量线图中,要素拥挤体现为等产量线后弯(BaCkWardbending)o在经济理论中,由要素拥挤形成的后弯部分的等产量线构成了生产函数的非经济区。本文以生产要素的可处置性为基础,依据拥挤的定义,从经济学理论上论述了拥挤和非经济区是同质问题,并通过对非经济区的理论论述和数学论证,得出了非经济区与拥挤在本质上是相同的,非经济区与拥挤均是由于要素的弱可处置性所造成的结论。关键词:拥挤;非经济区域;要素可处置性中文分类号:F224.O文献标识码:A文章编号:一、引言生产要素拥挤状态是指在一定技术条件下,一部分生产要素数量不变,其它一种或者多种投入要素增加到一定程度时,由于投入要素过多所形成的生产淤塞,产出降低的状态。首次把这个概念应用于经济学研究中,来描述该种生产状态的是荣获2000年诺贝尔经济学奖的美国学者D麦克法登(D.McFadden,1978),他将生产要素拥挤状态作为一个边界情况,泛指所有生产要素配置不当所形成的处置能力降低的现象。由于要素拥挤状态表现为明显的非有效性,这种情况发生的原因、条件和形成机理的研究就显得十分重要,而要素拥挤理论内涵的揭示是所有进一步研究的基础。所以本文对这个问题进行专门研究。生产要素拥挤问题的开创性研究工作逐步引起了相关学者的兴趣与重视。R.法尔和L.苏森(R.FareandL.Suensson,1980)通过案例证明了拥挤现象的普遍存在性。法尔(Fare,1983,2000)利用生产理论中技术的可处置性给出了要素拥挤的定义。他指出生产过程中某些生产要素具有弱可处置性是导致要素拥挤的原因。从拥挤状态的描述可以看出生产要素的拥挤状态表现为要素投入的过剩,是生产的一种无效状态。W.M库珀(W.W.Cooper,2000,2002)在这个角度提出了要素拥挤的新定义。他认为要素拥挤是生产过程中的一种极端无效状态,可以利用经典的Pareto有效性的条件来定义之。他将生产过程分为技术有效、无效和拥挤三种情况。法尔(1983,2000)和库珀(2000,2002)在各自拥挤定义的基础上建立并讨论了生产要素拥挤的测度方法。比较他们二人所提出的拥挤定义以及测度方法是目前学术界争论的焦点之一。而要客观和科学地评价法尔和库珀二人各自的方法体系,应该首先从分析拥挤的理论内涵开始。约翰逊(JohnSon,1913)在1913年首次提出总产量曲线理论。1930年之后,由于弗里希、史克内德和卡尔森(FriSCh,1935;Schneider,1934;Carlson,1939)加的杰出工作,总产量曲线和与之对应的生产函数理论已成为经济学中最基本、最重要的概念之一。在经济学中将总产量曲线达到最高产量后随着投入增加,产出降低的部分叫做非经济区(uneconomicregions);把总产量线最高产量之前其它部分,即所有生产要素的边际产量都为正时对应的区域叫做经济区。在投入要素的等产量线图中,非经济区域表现为等产量线后弯(Backwardbending)的部分。cf.R.G.D.艾伦(。2七如。511曲,1947)皿对非经济区作了一些简单的描述,厂商在配置生产要素进行生产的时候,会存在着一些无法避免的约束,会阻碍他们在利润最大化原则下选择生产资料成本最小的组合,经济区的范围是不完整的。所以将经济学的分析延伸到非经济区很有意义的。在艾伦(1947)的基础上G.H.鲍茨和E.J.米山(GH.BortsandE.J.Mishan,1962)对生产函数以及非经济区进行了更深入的研究,细致的描述了该区域内各种生产要素的变化规律,并对其进行了数学证明。拥挤状态是对非经济区的描述,而非经济区是拥挤状态的理论刻画。利用非经济区的研究结果可以有助于揭示拥挤问题的理论内涵。本文将要素拥挤和非经济区有机地结合在一起,指出了拥挤点和处于非经济区内点的一一对应关系,对要素拥挤的经济学内涵做出系统的经济学分析,并利用数学工具对拥挤问题的理论内涵进行了描述。二、要素可处置性和拥挤、非经济区域的关系生产要素的处置能力(孙巍1999)阿的强弱体现了一个生产部门配置生产资源合理性程度的高低。投入要素处于弱可处置状态时,会产生由于部分或全部要素的过剩而导致要素的闲置。由此可见,要素的可处置性和拥挤之间是存在密切关系的。在这部分利用非参数的集合描述方式,给出要素拥挤和可处置性的概念并做出相应的分析。设投入向量(N维非负生产要素)为1=区,痂)w父,投入向量所对应的产出向量(M维非负产出品)为=m)R,所有可行的投入向量和产出向量的集合所对应的特定生产过程的技术关系为T,7=(九,)£档+瞟,工£。由以上描述,生产函数和两个投入向量集合P和L之间的关系可以描述为P(X)="(x,m)T和L(W)=x:(XMTo由上述设定以及文献4和5可以得到以下定义。定义:a)投入要素的弱可处置性:如果所有的投入以相同的比例增加,产出不会降低,即YXWR,当z1时,则有PCr)qP(x);b)投入要素的强可处置性:如果投入增力(非减),则产出非减,新产出集合包含原产出集合,即V%,yR!时,则有P(X)=P(y)。从文献2和3可知,要素拥挤是一种或多种投入要素的减少会引起一种或多种产出的增加时,又不会影响其它产出变坏;或者是,一种或多种投入要素的增加会引起一种或多种产出的减少时,又不会使得其它产出有所改善的状态,拥挤状态是技术无效的表现。比较要素可处置性的定义和拥挤的定义,可以发现两者在描述产出随要素变化的规律在本质上是相同的,由此可以说明两者的内涵是相同的。由上述要素可处置性的定义,运用等产量线图对要素可处置性与非经济区的关系做出如下分析。图1是投入要素等产量线图。为了简洁地说明问题,假定厂商只用两种生产要素X1和X2进行生产。分别用横纵两个坐标轴表示,O是原点。弱可处置的投入集合L(U)是由图1中Cbde形成的有界区域构成的,弱可处置性表现为一种或多种投入要素的增加导致产出的降低的现象,这正是经济学中总产量曲线达到最高产量后随着投入增加,产出降低的非经济区部分。即图1中等产量线上后弯的cb部分。弱可处置性的投入集合L(U)意味着对投入要素的配置能力的降低或丧失,会使部分要素或者全部要素过剩而导致闲置,造成由于要素拥挤而形成生产过程阻塞,导致生产产量减少。由拥挤的定义可知,非经济区内要素所呈现的状态是要素拥挤状态。由上论述,要素的弱可处置性形成要素闲置,造成生产过程阻塞,导致产量减少,使等产量线发生后弯现象,形成了生产函数的非经济区。而要素拥挤状态表现为由于要素投入增多,某些要素具有弱可处置性,因而导致产量的减少。由上述可处置性、拥挤和非经济区三者的关系可以看出,非经济区与拥挤在本质上是相同的。因此可以通过分析非经济区内要素变化情况来研究处于拥挤状态时要素的变化规律。X2n a, XiS X×MAzdeOXAo投入要素等产量图图2两要素投入等产量线图三、要素拥挤的经济学内涵下面从两种投入要素的等产量线图出发,分析处于生产要素拥挤状态的经济学内涵。由经典理论可知,每一条等产量线的斜率为经=一空(MRT5,x),MRTAM,是要素X1对要素X2的边际技术替代率。一X1MPX般情况下,等产量线的斜率为负值。也即在既定的产量下一种要素的增加对应着另外一种要素的减少,两者表现为替代关系。但在实际中,斜率为正的情况是经常发生的,即一种要素的边际产量会减少,生产要素表现为无效替代的拥挤状态。图2为两要素投入等产量线图。同样为了简洁地说明问题,分别用横纵两个坐标轴表示两种生产要素和X2,。是原点。在BO点以上的SI区域内,由要素拥挤的定义,B。点以后随着X2的增加,Xi保持不变,会引起产量Q的减少,形成拥挤;同样,在A。点以右的S2区域内,Ao以后随着X增加,X2保持不变,同样会引起产量Q的减少,形成拥挤。这样B。、A。就是边际产量正负转变的临界点。基于同样道理,可以找出B。、B1,B2和A。、A1,A2,这些具有同样性质的临界点。这些临界点构成了两条曲线OM和0N,称之为脊线。在这两线之外的区域SI、S2为非经济区,两线所夹区域S3为经济区。对图2中的非经济区域SI、S2进行进一步研究,分析要素拥挤经济内涵。分别用横纵两个坐标轴表示两种生产要素和X2,。是原点。Y是产量为的丫。等产量线,OM和ON是脊线。为了得到整个区域Sl的要素特征变化特征,我们利用比较静态的分析方法,首先对选定的一条要素投入组合线0X°2进行分析,通过改变要素投入量来移动该条要素投入线,仅而得到整个要素平面内的要素变化特征。在Sl区域内,由经典的经济学生产理论所描述的要素X1、Xz变化特征,我们可以得到四个特征点rl,r2,r3,r4o在rl之前为零产量区,由生产要素组合的投入到有产品产出需要一个过程,不能立即实现有产出品。在rl和r2之间,X的边际产量为正,由于要素X2处于拥挤状态,X2的边际产量为负,在r2点,X的边际产量达到最大。在r2和r3之间,X1的平均产量增加,边际产量仍然为正,但边际产量逐渐减少,X2的边际产量仍然为负。在r2和r3之间,X1的平均产量增加,边际产量仍然为正,但边际产量逐渐减少,X2的边际产量仍然为负。在rl与r3之间,X2始终处在非经济区,处于拥挤状态。所以其边际产量一直为负。在r3点之后,X1,X2的要素组合点开始进入经济区,此时X2的边际产量为正,X1的平均产量和边际产量继续减少。在r4点之后,X的边际产量为负。这个过程投入要素的变化特征正对应了经典理论中单要素生产过程中的要素变化的特征。同样道理,改变选定产量X°2为C、X22,获得一组新的要素投入组合线及这些要素投入组合线对应的生产过程,由此得到了一系列新的特征点rlo,r20,r30,r40;rl,r2l,r311r41。这些特征点所构成的线oa和ob将Sl区域划分为X2Oaab和bOM三个区域X2Oa为“零回报”(zeroretumIS)区域,ab区域内X的边际产量递增,在ob处达到边际产量最大值。X2的边际产量为负,bOM区域内要素的平均产量增加,边际产量仍然为正,但边际产量逐渐减少,X2的边际产量仍然为负。而在这个过程中要素X2始终处于拥挤状态。在区域Sl内,投入过量的生产要素的边际产量为负,而正常投入的要素的边际产量为正。对于连续可微的生产函数来说,每个要素的边际产量为产量对该要素的一阶偏导数。由要素变化规律可知,要素X的一阶偏导数值大于零,而要素X2的边际产量小于零。对于两要素生产等产量线所对应的非经济区Sl或S2来说,在任意一个区域中,正常投入的那个生产要素的边际产量的变化率的特征是生产要素边际产量的变化率先为正,而后达到最大值,最后为负。同样道理,该要素的边际产量的变化率为产量对该要素的二阶偏导数,由要素变化规律可知,在aOb、Ob和bOM三个区域内,该要素的二阶偏导数分别为大于零等于零和小于零。由以上论述可以得到如下推论。内,要素Xi的边际产量的变化先后为大于零等于零和小于零,即、f(x=。和<O。图3两要素等产量图四、要素拥挤经济学内涵的数理描述在非经济区内后弯部分的等产量线有着明显的变化特征。下面从齐次性生产函数这个一般性条件开始,对处于拥挤状态的要素和后弯的等产量线的特征进行数理描述。在研究厂商理论时,生产集Y是展开理论的出发点,Y通常为技术约束所限定。在经济理论研究中常常要求生产集Y满足一些性质,例如单调性、凸性、规模收益性等。这些性质是普遍成立的。将具有规模收益性的生产集作为讨论的基点。规模收益性具有三种表现形态。常数规模收益、递减规模收益和递增规模收益。可以依据此性质来论证一个关于生产函数齐次性的命题。命题:若Y具有规模经济性,则其所对应的生产函数/()是齐次函数,aeRa证明:要证明此命题,则需首先证明下式成立,y<=>0f(z)(az)(WZWRF)若aYY,z%,由(-z,(z)r得-az9af(z)eY,于是MZ)f(az);反之af(z)f(qz),(-z,q)Y,则aqafz)faz),-z,<>(z)y;由此式得证。通过(1)式以及规模经济性的定义可以推得命题成立。由上述的命题可以知道只要生产集具有规模经济性,就可以相应找到一个齐次函数来刻画该生产集。由此也说明使用齐次生产函数来论证拥挤问题并不丧失一般性。以齐次生产函数为基础对处于拥挤状态的要素和后弯等产量线的特征进行数理描述,其结论是普遍成立的。由此设定一个含有两个生产要素的一次(其它阶次也成立)齐次生产函数Y=f(x,X2)来论证处于要素拥挤状态的等产量线的特征。对这个一次齐次生产函数Y=f(X,XJ求全微分可得dY=fljdx+fdX2由此结论以及Q=O可知,投入要素图中的等产量线的斜率为dX?_代二-7T对于任何一个给定产量值的等产量线X2=8(X)来说,等产量线斜率的变化率(分)是唯一确定的,对(2)式求全微分则有d2X. dXffm+2fmfSfR7由一次齐次生产函数的假设和欧拉定理,可得以下结论f,ft_JXIX2=_JXlXl将、代入兼中,则有J2X2JX12G陷,&+2/x, 久十7f2X;在生产函数给定的情况下,该生产函数对每个要素的一、二阶导数是确定的。据此,由上述证明可知生产函数所对应的要素等产量线的曲线特征也是确定的,要素组合投入点与等产量线是一一对应的。即一个要素投入点对应唯一一条等产量线;反之,每一条产量线也必定唯一对应着相应的要素投入点。这样就可以对第二部分所描述的拥挤要素变化规律进行证明。规律:L处于拥挤状态的要素替代是无效的。由推论(1)以及式(2),可知说明处于拥挤状态的生产要素投入点所形成的等产量线表现为后弯。由此在该区域内要素之间的替代是无效的,其替代率是大于零的。每一条等产量线所对应的后弯线的集合就构成了非经济区域。2.后弯的等产量线具有一拐点。描述等产量线形状特征的是该曲线的一阶和二阶导数。由特征处于非经济区内的等产量线是后弯的,由式和推论(1)、(2),可知在非经济区内等产量曲线的二阶导数有三种变化。即簧。、R = 0、<0dX; dX;式(5)中,外岗是边际产量的变化率。在非经济区域内,六因的变化说明了戊是先增加到最大值,再逐渐减少的变化趋势。由数学定义,及=O处的点就是非经济区域内等产量线上的拐点,也是边际产量递增那个要素的边际产量极大值点。即图3中为。b与等产量线Y(Yo)的交点。这也说明了等产量线后弯部分的曲线特征是按照“凹向原点一拐点一凸向原点”这个过程变化的。五、结论依据拥挤的定义,通过二、三部分对拥挤要素的变化规律的经济分析和第四部分对拥挤要素经济分析的数理描述可以得到如下结论。1 .生产要素拥挤状态是非经济区内要素点的表现形态,而非经济区是生产要素拥状态的理论刻画。非经济区是由于要素的弱可处置性形成的。同样要素的弱可处置性导致了生产要素拥挤的发生。2 .处于拥挤状态时的要素产量不再是单调的。等产量线的后弯区域为处于拥挤状态的要素投入点所在的区域;若要素投入的组合点落入等产量线的后弯区域,则要素投入点必表现为拥挤状态。3 .处于拥挤状态的要素之间的替代是无效的。所以要素拥挤状态的特征是投入要素的过剩和闲置。

    注意事项

    本文(生产要素拥挤的理论内涵.docx)为本站会员(夺命阿水)主动上传,课桌文档仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知课桌文档(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-1

    经营许可证:宁B2-20210002

    宁公网安备 64010402000986号

    课桌文档
    收起
    展开