欢迎来到课桌文档! | 帮助中心 课桌文档-建筑工程资料库
课桌文档
全部分类
  • 党建之窗>
  • 感悟体会>
  • 百家争鸣>
  • 教育整顿>
  • 文笔提升>
  • 热门分类>
  • 计划总结>
  • 致辞演讲>
  • 在线阅读>
  • ImageVerifierCode 换一换
    首页 课桌文档 > 资源分类 > DOCX文档下载  

    Determinantsofsoilcarbonandnitrogenhydrolyzingenzymes.docx

    • 资源ID:1213649       资源大小:256.67KB        全文页数:15页
    • 资源格式: DOCX        下载积分:5金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要5金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    Determinantsofsoilcarbonandnitrogenhydrolyzingenzymes.docx

    EnvironmentalScienceandPollutionResearchhttpsdoi.org10.17sll356-021-16817-8RESEARCHARTICLEDeterminantsofsoilcarbon-andnitrogen-hydrolyzingenzymeswithindiferentaforestedlandsincentralChinaQianxiLi国 Xiaoli Chengxlcheng Hubei Provincial Academy of Eco-environmental Sciences (Hubei Eco-environmental Engineering Assessment Center), Wuhan 430079, People's Republic of China* Schl of Environmental Studies. China University of Geosciences, Wuhan 430074, People's Republic of ChinaYiranDong2QianZhang', Key Laboratorjf of Soil Ecology and Health in Universities OfYunnan Province. School of Ecology and Environmental Science, Yunnan University, Kunming 650091, People's Republic of ChinaWeiJia Key Laboratory of Aquatic Botany and Watershed Ecology. Wuhan Botanical Garden, Chinese Academy of Sciences (CAS), Wuhan 430074, People's Republic of ChinaXiaoIiCheng3Received:27May2021/Accepted:25September2021©TheAuthor(s),undere×dusivelicencetoSpringer-VerlagGmbHGermany,partofSpringerNature2021AbstractSoilorganicmatter(SOM)decompositionisregulatedbyacomplexsetofenzymes.However,theinfuencesofbioticandabioticfactorsonspatialvariationsofsoilenzymeactivity(EA)withinecosystemsremainunresolved.Here,wemeasuredEAatdiferentlocationswithintwoaforestedlands(coniferouswoodlandandleguminousshrubland),andsimultaneouslycollecteddataonsoilphysico-chemical,vegetation-related,andmicrobialpropertiestoidentifythedeterminantsofEAspatialpatterns.TheresultsshowedthatsoilorganicCandtotalNcontentswerethepredominantabioticfactorsinregulatingabsoluteEA(EAperunitofoven-drysoilmass)inbothaforestedlands,whilesoilpHwasthepredominantfactorinregulatingspecifcEA(EAperunitofmicrobialbiomass(MB).However,thepredominantbioticfactorsvariedwiththeaforestedtype:therootbiomassandMBwerethedeterminantsofEAintheshrubland,whereasthetreedistribution,litterandrootbiomass,andbacterialbiomasswerethedeterminantsinthewoodland.Vegetation-relatedfactors(i.e.,litterandrootbiomass)indirectlyinfuencedsoilEAbyregulatingthesoilabioticfactors.ComparedwiththeMB,microbialcommunitycompositionhadaminorimpactonEA.ThevarianceofspecifcEA(EAperunitofMBorSOM)explainedbyselectedfactorswasmuchlowerthanthatofabsoluteEA.Inaddition,theenzymaticC/Nratiowithinecosystemsdidnotfollowageneralpattern(1:1)observedataglobalscale.Ourresultsprovidenovelexperimentalinsightintoecosystem-levelspatialvariabilityofCandNcyclingviaenzymes,suggestingthatsoilabioticfactorsaremorereliablethanbioticfactorstorefectEAspatialpatternsacrossaforestedsystems.KeywordsSoilenzymeactivitySpatialvariationAforestationEnzymestoichiometryVariationpartitioningpublishedonline:26october2021ResponsibleEditor:RobertDuranIntroductionGiventhatsoilscontainthelargestreservoiroforganiccarbon(C)andnitrogen(N)inthebiosphere(Lal2004;LehmannandKleber2015),soilorganicmatter(SOM)mineralizationcouldpotentiallyregulateglobalCandNcycling.Meanwhile,soilenzymesareregardedasproximateagentsofSOMmineralizationbecausetheyreducetheactivationenergyofrate-limitingreactionsandspeedupthebreakdownofpolymericmacromoleculesintolowmolecules(Nannipierietal.2012;Bumsetal.2013;Maoetal.2015).Therefore,accuratepredictionofsoilenzymeactivity(EA)canprovideusefulinformationaboutSOMturnoveraswellasitsresponsetoanthropogenicdisturbancesandenvironmentalchanges(Hanetal.2019).However,thepredictionofsoilEAiscomplicatedsinceenzymesarenotevenlydistributedintheenvironment(Baldrian2014).RelativelyhighspatialvariabilityofsoilEAhasbeenobservedevenwithinasinglefeldbecausesoilEAareregulatedbymultiplebioticfactors(e.g.,vegetationandmicrobialcommunitycomposition)andabioticfactors(e.g.,soilphysico-chemicalpropertiesandmicroclimate).Inrecentdecades,anumberofstudieshavebeenconductedtoexplorethespatialvariationsofsoilEAandtheirdeterminantsataglobalorregionalscale.Basedonthesestudies,soilpHandSOMcontentwereidentifedasthemostimportantabioticfactorsafectingsoilEA,especiallyforsoilhydrolaseactivity(Sinsabaughetal.2008;KivlinandTreseder2014;Xuetal.2020).However,thespatialvariabilityofsoilEAwithinecosystemshasbeenlargelyneglected(Banerjeeetal.2016;Stursovaetal.2016).Whetherobse,ationsatlargescalescouldapplytoasingleecosystemisstillanopenquestion.AlthoughafewstudieshaveinvestigatedthespatialheterogeneityofsoilEAwithinecosystemsandthedeterminants,theseconclusionsareindebate.Forexample,Boeddinghausetal.(2015)reportedthatsoilpHwasanimportantdeterminantofspatialdistributionofEAinagrasslandecosystem,whilestudiesconductedinforestecosystemsandinagrassland-woodlandecotonefoundthatsoilpHwasnotspatiallyconnectedwithsoilEAbecauseoftheverylowvariationsofpHobservedinthesestudies(Banerjeeetal.2016;tursovaetal.2016).Mayoretal.(2016)investigatedthespatialdiferencesinsoilEAlevelsbetweenvegetationpatchesandinter-patchesinashrublandecosystem,andfoundthatvegetationcanopycouldafectsoilEApatternsthroughrhizosphereefectsandsubstrateinputbyIitterfall(Dornbush2007;Brzosteketal.2013;Fengetal.2019).Bycontrast,vegetationpropertiesdidnotSignifcantlyinfuencesoilEAinaforestecosystem(Slursovdetal.2016).Meanwhile,soilmicrobialbiomass(MB)andcommunitycompositionhavebeensuggestedasdirectregulatorsofsoilEAspatialpatternssincetheproductionofaspecifcenzymeisinducedbysomeparticularspecies(BaldrianandSnajdr2011;Bowlesetal.2014),butexceptionswerealsofoundinotherstudiespartlydueIothatalargeportionofsoilMBwasmetabolicallyinactive(Bocddinghausetal.2015;Stursovdetal.2016).Inaddition,soilpHwasfoundtobecorrelatedwithCellobiohydrolaseandchitinaseratherthan-and-glucosidasesinagrasslandecosystem.AllthesecontradictoryresultsindicatedthattheefectivenessofbioticandabioticvariablesinregulatingsoilEAwithinecosystemswouldvarydependingontheecosystemtypeorenzymetype.Despiteofthesestudies,onlyfewstudiescomparedtheefectsofsoilphysico-chemicalvariables,vegetationproperties,andmicrobialcommunitytogetheronthevariationsofsoilEAwithindiferentecosystems.Moreover,asmultiplefactorsareinterrelated(Walleniusetal.2011),therelativecontributionsofthesefactorstosoilEAspatialpatternshavenotbeenwellinvestigated.SoilEAcanbeexpressedindiferentformsincludingtheabsoluteactivity(i.e.,activityperunitofoven-drysoilmass)andthespecifcenzymeactivity(i.e.,activityperunitofSOMorMB).ThespecifcEAcanbeusedtoeliminatetheimpactofSOMorMB,andtestwhethervariationsofsoilEAcanoccurindependentlyofvariationsofSOMorMB(RaiesiandBeheshti2014).Todate,muchlessisknownabouthowthespecifcEArespondspatiallytootherabioticandbioticfactorsatsmallscaleswithindiferentecosystems.Inaddition,therelativeabundanceofsoilC-andN-hydrolyzingenzymes(i.e.,enzymaticC/Nratio),namely,enzymestoichiometry,exhibitsthepotentialtorefectthebiogeochemicalequilibriumbetweenmicrobialCandNdemandsandnutrientavailabilityoftheenvironment(Sin-sabaughetal.2009;Mooshammeretal.2014).Thus,spatialvariationsofenzymaticC/NratiowithinecosystemscouldprovideafunctionalassessmentoftherelativeresourcelimitationsofmicrobialmetabolismandtherelativeratesofSOMdecomposition(Sinsabaughetal.2009;Liaoetal.2021).Previousstudiesconcerningenzymestoichiometrypatternshavebeenmainlyconductedatalargeorglobalscale(Sinsabaughetal.2008;PengandWang2016).ThesestudieshaveshownthatratiosofC-andN-hydrolyzingenzymeactivitiesconvergedon1:1.Itislessclearifthepatternofenzymestoichiometryataglobalscalecanbeappliedwithinecosystems.Inthepresentstudy,weinvestigatedspatialvariationsofsoilC-andN-hydrolyzingenzymes(defnedasenzymesthatcontributetothehydrolysisoforganicCandNcompoundsinsoils)withintwotypicalaforestedlands(woodlandandshrubland),aswellasthefactorsthatbestregulatingthesevariations.WehypothesizedthatthespatialvariationsofEAwithinecosystemscouldbeexplainedbythecombinationoffactorsrelatedtosoilenvironment,vegetation,andmicrobialcommunity,butthemajordeterminantsofthesevariationswouldVarydependingontheecosystemtypeandenzymetype.Inaddition,toexploretheallocationofC-andN-hydrolyzingenzymes,wealsohypothesizedthattheenzymaticC/Nratiowithinecosystemsshouldbesimilartothatataglobalscale,whichconvergedon1:1.MaterialsandmethodsStudysiteandsamplingdesignThestudywasconductedintheexperimentalareaoftheWulongchiResearchStation(32o45,N,111o13,E),HubeiProvince,China.Primaryforestsinthisregionwereconvertedtocroplandsabout70yearsagoasaresultoftheresettlementofinhabitants(LiandZhang2008).Largeareasofcroplandswerelaterconvertedtoopenareaswithnovegetationcoverduetointensivelanddegradation.Sincethe1980s,aforestationhavebeenimplementedinthisregion(Zhuetal.2010).Asaresult,mostoftheopenareashavebeenconvertedtowoodlandandshrublandplantations.Thetwoaforestedlandswereunderdifferentnutrientregimes,namely,thatthewoodlandsitewasplantedwithconiferoustrees(Platycladusorientalis(Linn.)Franco,characterizedbyhighC/Nratio),whiletheshrublandsitewasplantedwithleguminousN-fxingshrubs(Sophoradavidii(Franch.)Skeels).Thisdiferenceinlitterqualitybetweenthetwosystemsresultedindifer-entnutrientregimesanddiferencesinsoilenvironmentandmicrobialcommunity(Table1).Managementsuchasfertilizationandirrigationontheseareashasbeenminimal.BothoftheaforestedsystemsthatdominatedbythetwospeciesalsowidelydistributeinnorthernChina.AstandofIO×10mconsistingof2×2mgridcellswaslaidoutineachofthesitesincludingwoodland,shrubland,andtheopenarea(i.e.,control)inApril2017.Surface(0-10cm)soilsamplewascollectedusingacoreaugerateachnodeofthesegrids,resultingin36samplesperstand(Fig.1).Beforesoilsampling,wecompletelycollectedtheabovegroundlitterusinga0.2×0.2mframeateachnode.Alllivingrootsineachsoilsampleswerecarefullyseparatedfromdeadrootsandwashed.Litlerandlivingrootswereovendriedat65toaconstantweighttoobtainthelitterandlivingrootbiomass(gm2).Allplantsthatlocatedinsideandaroundthe100-m2standwithdiameteratbreastheight(DBH)1cmweremeasured,andtheirgeographiccoordinateswererecorded(Fig.1).SoilanalysisEachfreshsoilsamplewassievedwitha2-mmmesh.Aportionofeachsoilsamplewasfreezedriedforthemeasurementofphospholipidfattyacids(PLFAs),andanotherportionofsoilsampleswerestoredat4forthedeterminationofsoilEAwithin72h.Theremainingsoilswereairdriedforthedeterminationofothersoilproperties.Soilmoisturecontent(SMC)wasobtainedgravimetricallybyOven-drying2()goffreshsoilat105toconstantweight.SoilpHwasmeasuredaftershakingasoil-watersuspension(1:2.5)for30minwithadigitalpHmeter.Soilorganiccarbon(SOC)andtotalnitrogen(STN)concentrationsweredeterminedonanelementalanalyzer(ThermoScientifcFlash2000HT,Germany)afterremovinginorganicmatterbytreatingwith1MHCl(Chengetal.2013).ParameterEcosystem typeWoodlandShrublandCV (%)Open areaMeanCV (%)MeanMeanCV (%)Local environmentsLitter biomass (g m2)823.9a55161.7b94Root biomass (g m 2)560a58139.2b143Soil pH8.1c28.3b38.8a1SMC (%)19.3a2110.8b354.3c22SoilON19.4a2811.5b139.4c16SOC (g kg ,)21.04a416.24b851.29c18STN (gkg-')1.12a380.54b790.14c21RIC (gkg ,)14.99a444.47b651.20c33RIN (g kg l)0.37a410.14b710.10b23Microbial PLFA biomass (nmol g 1 dry soil)Bacterial PLFA74.59a5411.15b656.64c70Fungal PLFA12.33a602.23b731.41c79G* PLFA23.64a573.88b80l.I7c62G PLFA50.57a557.27b595.48c73ACT PLFA14.69a621.73b810.52c65AMF PLFA5.17a620.73b790.19c67Table 1 Mean and coefcients of variation for vegetation, soil, and microbial parameters within each site in the study areaLowercase letters indicate diferences among land types based on an ANOVA with post hoc comparisonsSMC, soil moisture content; SOC, soil organic carbon; STN, soil total nitrogen; RIC, recalcitrance index for C; RIN, recalcitrance index for N: F. total fungi: B. total bacteria; G*, gram-positive bacteria; G-, gram-negative bacteria; AMF, arbuscular mycorrhizal fungi; ACT, actinobacteriaSoilrecalcitrantC(RC)andN(RN)concentrationswereobtainedbyacidhydrolysis(seemoredetailsinXuetal.2015).Briefy,500mgofair-driedsamplewastreatedwith25mlof2.5MH2SO4.Theresiduewasrecoveredbyrepeatedcentrifugation,andthentreatedwith2mlof13MH2SO4overnight.Theremainingresiduewasrecoveredagainasdescribedaboveandthendriedat60Eastin(mlFig.1SoilsamplingschemeandtreedistributioninthethreekindsofecosystemsintheDanjiangkouReservoirarea.Blueasterisksrepresentsoilsamplingsites.RedcirclesintheWoodlandrepresentPlat-ycladusorientalis(Linn.)Franco.RedandgraycirclesintheshrublandrepresentSophoradavidii(Franch.)SkeelsandViiexnegundoL.var.Cannabifolia(SiebetZucc.)Hand.-Mazz.respectively.Thesizeofthecircleinthewoodlandandshrublandisproportionaltotreediameteratbreastheightundshrubbasaldiameter,respectivelyformeasuringRCandRNontheelementalanalyzer.TherecalcitranceindicesforCandN(RICandRIN,respectively)werecalculatedastheratiosofRCandRNtototalCandN.ThemicrobialbiomassandcommunitystructurewereassessedbyusingPLFAanalysis(BossioandScow1998)(seemoredetailsinWuetal.2017).SpecifcPLFAmarkerswereusedtoquantifydiversetaxonomicgroups,includinggram-positivebacteria(G)gram-negativebacteria(G-),actinomycetes(ACT),arbuscularmycorrhizalfungi(AMF),totalfungi(F),andtotalbacteria(B)accordingtoXuetal.(2015)andareshowninTableSl.Amodifedmethodbasedonfuorescent-linkedsubstratemicro-plateprotocolwasusedtomeasuretheactivitiesofenzymes(including-glucosidase(BG),/V-acetyl-glucosaminidase(NAG),andleucineaminopeptidase(LAP)insitupHconditionsandtemperature(Smithelal.2016).Inthepresentstudy,weselectedthesesoilC-andN-hydrolyzingenzymesduetothefollowingreasons:(1)hydrolysishasbeenconsideredmoreimportantthanoxidationinSOMmineralizationprocesses(Nannipierietal.2012),(2)theiractivitiesareusuallymuchhigherthanotherhydrolasesacrossdiferentecosystems(Bowlesetal.2014;Schimeletal.,2017;Zhangetal.2019),and(3)theratioofthethreeenzymes(InBG:ln(NAG+LAP)wasgenerallyusedtorepresentenzymestoichiometry(Sinsabaughetal.2008;PengandWang2016).Inbrief,1gofsoilwashomogeneouslydispersedin90mlofsodiumacetatebufer.ThepHofthebuferwasadjustedto8.0.Thepreparedsoilsuspension,standardsolution,andfuorescentsubstratesolution(200Mintotal)weresuccessivelyaddedintoa96-wellmicroplate(WhatmanInc.,FlorhamPark,NJ).Thecompounds7-amino-4-methyIcoumarin(MUC)and4-methylumbclliferone(MUB)wereusedasthestandardreferencesforLAPandIheremainingenzymes,respectively.Themicroplatewasincubatedat25for3.0h,andthen50lof1MNaOHwasaddedtostopthereaction.Thereleasedfuorescencewasdeterminedusingamultifunctionalmicroplatereader(TecanInfniteM200pro,Salzburg,Austria).Thewavelengthofexcitationusedwas360nmandtheemissionusedwas450nm.UnitsforabsoluteEAwereexpressedasnanomolesoffuorescenepergramofdryfractionperhour.EAwerenormalizedbyMBandSOMtoobtaindifferentspecifcEA(EA:MBandEA:SOM).CalculationandstatisticsWeusedaproximityindex(treeinfuencepotential,IP)toquantifytheinfuenceoftreedistributiononsoilEA(SaetreandB熊th2000).ThisindexrefectsthecombinedinfuenceofneighboringtreesonsoilEAateachsamplingpoint,andisexpressedusingEq.(1):P=iDBHie×p(-cdi)(1)whereDBHiisthediameteratbreastheightorbasaldiameterofplantiinmeters,CiSascalingcoefficientandwassett

    注意事项

    本文(Determinantsofsoilcarbonandnitrogenhydrolyzingenzymes.docx)为本站会员(夺命阿水)主动上传,课桌文档仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知课桌文档(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-1

    经营许可证:宁B2-20210002

    宁公网安备 64010402000986号

    课桌文档
    收起
    展开