欢迎来到课桌文档! | 帮助中心 课桌文档-建筑工程资料库
课桌文档
全部分类
  • 党建之窗>
  • 感悟体会>
  • 百家争鸣>
  • 教育整顿>
  • 文笔提升>
  • 热门分类>
  • 计划总结>
  • 致辞演讲>
  • 在线阅读>
  • ImageVerifierCode 换一换
    首页 课桌文档 > 资源分类 > DOCX文档下载  

    第7讲函数的奇偶性与周期性(教师版).docx

    • 资源ID:1237475       资源大小:102.33KB        全文页数:13页
    • 资源格式: DOCX        下载积分:5金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要5金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    第7讲函数的奇偶性与周期性(教师版).docx

    第7讲函数的奇偶性与周期性思维导图题型1:函数奇偶性的判定题型2:函数奇偶性的应用题型3:由数的周期性函数的奇偶性与周期性考向1:单调性与奇偶性结合题型4:函数性质的综合应用'考向2:奇偶性与周期性结合【考向3:单调性、奇偶性与周期性结合忽视奇偶函数的定义域关于原点对称致误常见误区/(利用奇偶性求解析式忽视定义域致误知识梳理I.函数的奇偶性奇偶性定义图象特点偶函数如果对于函数兀O的定义域内任意一个工,都有人一)=yu),那么函数大幻是偶函数关于y轴对称奇函数如果对于函数段)的定义域内任意一个X,都有«一幻=一段),那么函数外)是奇函数关于原点对称2.周期性(1)周期函数:对于函数丁=%),如果存在一个非零常数使得当X取定义域内的任何值时,都有加+7)=Kr),那么就称函数y=x)为周期函数,称7为这个函数的周期.(2)最小正周期:如果在周期函数«r)的所有周期中存在一个最小的正数,那么这个最小正数就叫做人幻的最小正周期.核心素养分析能用代数运算和函数图象揭示函数的主要性质;在现实问题中,能利用函数构建模型,解决问题。重点提升数学抽象、逻辑推理素养.题型归纳题型1函数奇偶性的判定【例11】(2019全国)下列函数中,为偶函数的是()A. y = (x + l)2B.y = 2-xC.y=|sin%ID.y=(x+l)+g(x-l)【分析】根据函数奇偶性的定义分别进行判断即可.【解答】解:.函数关于X=T对称,函数为非奇非偶函数,B.函数的减函数,不具备对称性,不是偶函数,C,f(-x)=|Sin(T)I=I-sinxHsinx=f(x),则函数")是偶函数,满足条件.D.由得f>丁得x>l,函数的定义为(l,+),定义域关于原点不对称,为非奇非偶函数,x-l>Ox>故选:C.例1-2(2019肥西质检)判断下列函数的奇偶性:Zy,36-2)=x+3-3;(2y(x)=WT+y2;(3)/U)=log2 (I x2)-2-22+x,XV0,小尸【分析】根据函数奇偶性的定义判断即可.36A236X220,f-6x6*【解答】由©=K,可知1+3L3#。味。疝一6,故函数加的定义域为(-6,0)U(0,6,定义域不关于原点对称,故兀0为非奇非偶函数.“一220,(2)由,、=X2=InX=±1,故函数HX)的定义域为-1,1,关于原点对称,且兀6=0,所以/一I.V-120X)=贝X)=fix),所以函数fl_x)既是奇函数又是偶函数.由1 x2>0,-2-20=>I<x<0 或 0<< 1,定义域关于原点对称.此时/U)=log? (1 .r2)log2 (1x2)k-2-2k)g2 Q)故有X)=lg2L (-X)2 log? ( 1 一)=一/(%),所以函数4V)为奇函数.(4)法一:图象法三x,XV0,画出函数TU)=,'''的图象如图所示,图象关于),轴对称,故凡r)为偶函数.X7-X>x>0法二:定义法易知函数y()的定义域为(一8,)U(o,+),关于原点对称,当Qo时,J(X)=X1-Xf则当X<0时,一>0,故人-x)=f+=y();当<0时,y(x)=jr+x,则当x>0时,x<0,故|一x)=%2x=x),故原函数是偶函数.法三:/(x)还可以写成fl,x)=X2H(x0),故兀0为偶函数.【跟踪训练1-1】(2020春龙华区校级月考)已知函数/(x)=4il,g(x)=2x,则下列结论正确的是(21)A./(x)g(x)为奇函数B.f(x)g(x)为偶函数C./Cr)+gCr)为奇函数D.f()+g()为非奇非偶函数【分析】判断可知函数/(X),g(x)均为奇函数,利用奇函数的性质即可得解.【解答】解:/(-x)=J=±7=-(),故函数/(x)为奇函数,显然函数g(x)也为奇函数,2A-I12.(x)g(x)为偶函数,/(x)+g(x)为奇函数,故选:BC.【跟踪训练1-2】(2019秋桥西区校级月考)判断下列函数的奇偶性,并求函数的值域(1)(2) g(x)=3-x【分析】(1)可以得出f(x)=x,从而可看出F(X)是济函数,值域为R;(2)可看出g(x)是偶函数,并容易求出g(x)的值域为(-8,3.V2-V【解答】解:(1)/(X)=三三二X,X-I.(X)是奇函数,且/(x)的值域为R;(3) g(x)=3-x为偶函数,x.O».3-1XI,3,.g(%)的值域为(-8,3.【名师指导】判断函数奇偶性的3种常用方法(1)定义法:确定函数的奇偶性时,必须先判定函数定义域是否关于原点对称.若对称,再化简解析式后验证f(-x)=±f(x)或其等价形式f(-)±f(x)=0是否成立.(2)图象法:,关于原点对称-(x)为奇函数|/G)的图象K'关于戈轴对称;T/G)为偶函数(3)性质法:设f(x)tg(x)的定义域分别是,D2,那么在它们的公共定义域上:奇+奇=奇,奇X奇=偶,偶+偶=偶,偶X偶=偶,奇X偶=奇.题型2函数奇偶性的应用【例2-1】(1)(2019次者全国卷11)已知危)是奇函数,且当x<0时,危)=一e",若"n2)=8,则=(2)函数r)在R上为奇函数,且QO时,=x+l,则当XVO时,4X)=.(3)Q020湖南永州质检)已知函数yW=x3+sinx+l(ER),若几/)=2,则区一)=.【分析】根据函数奇偶性的性质求解.【解答】(1)当QO时,一XVoJC)=一晨号因为函数HX)为奇函数,所以当x>0时,fix)=*X)=e-r,所以/(ln2)=e-fl,n=8»所以a=-3.(2)因为HX)为奇函数,当心>0时,危)=x+l,所以当XVO时,一QO,0=-X)=_(-x+i),即X<0时,/(X)=(x+1)=-1.(3)设F,(x)=J(x)-1=+sin%,显然尸(x)为奇函数.又尸(4)=()1=1,所以F(a)=J(-a)-I=-L从而/(-)=0.【跟踪训练21】(2019新课标11)设f(x)为奇函数,且当"0时,f(x)=ex-l,则当XVO时,f(x)=()A.e-x-B.e-x+lC.-ex-D.-ex+1【分析】设x<0,则r>O,代入LA知函数解析式,结合函数奇偶性可得XVO时的f().【解答】解:设x<0,则>0,/.f(-x)=e-x-t.设/(x)为奇函数,.-f(x)=eT-l,即f()=-ex+.故选:Q【跟踪训练2-2】(2020上海)若函数y=3+"为偶函数,则a=.【分析】根据题意,由函数奇偶性的定义可得a3i)+*=3'+(,变形分析可得答案.【解答】解:根据题意,函数),=a3'+"为偶函数,则/(X)=/(%),即。31)+=。3+工,3(田3v变形可得:a(3x-3-)=(3x-3-x),必有=1;故答案为:1.【跟踪训练2-3】(2020迎泽区校级模拟)已知/(x)为奇函数,当x>0时,/3=/依-3x,则/(T)的值为.【分析】结合已知函数解析式及奇函数的定义代入即可求解.【解答】解:因为/(x)为奇函数,当x>0时,f(x)=Irix-3x,则/(T)=-(1)=T历1-3)=3.故答案为:3【跟踪训练2-4】(2019秋丰台区期末)函数y=f(x)是定义在R上的偶函数,且图象过(-1,1)点.已知尢.0时,/(x)=优-l(>O且。1).(I)求/(1)的值和。的值;(II)若/(m)0,3,求加的取值范围.【分析】(I)根据题意,由偶函数的性质可得f(l)=/(T)=1,进而结合函数的解析式可得f(l)=a-1=1,解可得的值,即可得答案:(三)根据题总,由函数的解析式分析可得机.O时,/(?),3的解集,结合函数的奇偶性分析可得答案.【解答】解:(I)根据题意,y=f(x)图象过(Tl)点,BP/(-1)=1,又由y=f(x)是定义在R上的偶函数,则/(1)=/(-1)=1,又由尤.0时,f(x)=ax-,则/(1)=«-1=1,解可得。=2;(II)根据题意,由(I)的结论,加0时,f(x)=2x-,此时若f(m),3,即2'"T,3且”.O,解可得:成M2,又由/(x)为偶函数,则/(6)獭=>-26?2,即机的取值范围为-2,2.【名师指导】与函数奇偶性有关的问题及解题策略(1)求函数的值:利用奇偶性将待求值转化为已知区间上的函数值求解.(2)求函数解析式:先将待求区间上的自变量转化到已知区间上,再利用奇偶性求出,或充分利用奇偶性构造关于HX)的方程(组),从而得到HX)的解析式.(3)求解析式中的参数值:在定义域关于原点对称的前提下,利用F(X)为奇函数QH-X)=-Hx),Ax)为偶函数Or(X)="-),列式求解,也可利用特殊值法求解.对于在X=O处有定义的奇函数r(x),可考虑列等式F(O)=O求解.题型3函数的周期性【例3-1】(2019上海)已知函数/(幻周期为1,且当0<兀,1时,/(x)=log2x,则/§)=【分析】由题意知函数f(x)周期为1,所以化简/(|)再代入即可.【解答】解:因为函数/(幻周期为1,所以/()=g),因为当0<&1时,/(x)=log2x,所以g)=T,故答案为:-1.【例3-2】(2020安阳二模)已知y=(x)是定义在R上的函数,且/(-4)=-(x),如果当XaT,0)时,/(X)=(应尸,则/(266)=【分析】推导出fCr+8)=-/(x+4)=f(x),再由当xT,0)时,/(x)=3',得到/(266)=/(33x8+2)=f(2)=-f(-2),由此能求出结果.【解答】解:y=(x)是定义在R上的函数,且/*+4)=-/(幻,f×+8)=-f(x+4)=/(x)».,0)时,Fa)=(际(266)=(33×8+2)(2)=2)=-(伪?=-2.故答案为:-2.【跟踪训练3-1】(2020春红旗区校级月考)已知/")是定义在R上周期为2的函数,当入引-1,1时,/(x)=x,那么当xe-7,-5时,/(x)=()A.Ix+3B.x-3C.x+6D.x-6【分析】当x-7,-5时,x+6-l,1,再利用周期性即可得出.【解答】解:当x-7,-5时,x+6-l,1.fx)=f(x+6)=x+6,故选:C.【跟踪训练3-2】(2019山西八校联考)已知危)是定义在R上的函数,且满足兀c+2)=一就P当2«时,Ax)=X则7(一号)=-【分析】先求出函数的周期,再根据周期函数的性质计算即可.【解答】<x+2)=一八万",x+4)=(x),7/(一:)=/(1),又2r3时,=x,5-25-2-【名师指导】函数周期性有关问题的求解策略(1)求解与函数的周期性有关的问题,应根据题目特征及周期定义,求出函数的周期.(2)周期函数的图象具有周期性,如果发现一个函数的图象具有两个对称性(注意:对称中心在平行于X轴的直线上,对称轴平行于y轴),那么这个函数一定具有周期性.题型4函数性质的综合应用【例4-1】(2020山东)若定义在R的奇函数/*)在(-,0)单调递减,且/(2)=0,则满足#(x-l).O的X的取值范围是()A. -1, 1J3, -Ko)C. -1, OJ(J1, +oo)B. -3, -1JO, 1D. -1, OJ1 , 3【分析】根据函数奇偶性的性质,然后判断函数的单调性,利用分类讨论思想进行求解即可.【解答】解:.定义在R的奇函数/Cr)在(-,O)单调递减,且/(2)=0,/(X)的大致图象如图:.J(x)在(0,)上单调递减,JSL/(-2)=0:故/(-1)<0;当X=O时,不等式MXx-1).0成立,当X=I时,不等式M'(x-l).O成立,当x-l=2或工一1=一2时,即x=3或X=-I时,不等式MXX-I).O成立,当x>0时,不等式MXX-I).O等价为/(x-l).O,此时,此时1<兀,3,O<X-12当x<0时,不等式xf(x一1).O等价为f(xT,O,即,得-L,x<O,-2,x-l<0综上-掇/0或掇/3,即实数X的取值范围是-1,OJ1,3,故选:O.【例4-2(2020安庆模拟)已知奇函数f(x)的定义域为R,若f(x+l)为偶函数,且/(1)=2,则/(2019)+/(2020)=()A.-2B.-1C.0D.1【分析】根据题意,由/&+1)为偶函数,分析可得-/(-幻=(2+x)11(1)=2,结合函数周期即可得答案【解答】解:根据题意,函数/")为奇函数,则-/0)=/(-X),又由/(x+l)为偶函数,则函数/(冷的图象关于=1对称,则有f(-x)=(2+x)=f(-x)=-f(x),所以f(x+4)=(x)即函数的周期为4,且f(1)=2,则/(2019)=/(T+2020)=(T)=-f(1)=-2,/(2020)=/(0)=0,则/(2019)+/(2020)=-2故选:A.【例4-3(多选)(2020烟台模拟)已知/")是定义域为(o,E)的奇函数,/(x+l)是偶函数,且当x(0,1时,/(x)=-x(x-2),则()A. /(幻是周期为2的函数B. /(2019)+/(2020)=-IC. f(x)的值域为T,1D. f(x)的图象与曲线y=Cosx在(0,2)上有4个交点【分析】A,根据题意得f(x)=(x-4),/(%)是周期为4的周期函数,A错误;B,因为/(幻是周期为4的周期函数,三/(2020)=/(0)=0;当XW(0,1时,/()=-(x-2),则/(I)=-l×(l-2)=l,三/(2019)=/(-1+2020)=/(-1)=-/(1)=-1,进而得出5正确.C,当w(0,1时,/(x)=-x(x-2),此时有O<f(x,l,又由f(x)为R上的奇函数,则x-l,0)时,-LJCOvO,进而得出C正确.。,由函数图象可知,。正确.【解答】解:根据题意,对于A,F(X)为R上的奇函数,f(x+l)为偶函数,则/(x)=/(x_l+l)=/(_x+2)=_/(x_2)=/*_4);则/(x)是周期为4的周期函数,A错误;对于B,/(x)为定义域为R的奇函数,则/(0)=0,f(x)是周期为4的周期函数,则/(2020)=/(O)=O;当x(0,1时,/(x)=-x(x-2),则/(1)=-l×(l-2)=l,贝J/(2019)=/(-1+2020)=f(T)=-f(1)=-1,贝U/(2019)+/(2020)=7;故B正确.对于C,当x(0,1时,f(x)=-x(x-2),此时有0v(%),L又由f(x)为R上的奇函数,则xw7,0)时,-L"(x)vO,所以函数f(x)的值域-1,1故C正确.故选:BCD.【跟踪训练4-1】(2020新课标11)设函数/(X)=V-,则/(»)XA.是奇函数,且在(0,”)单调递增B.是奇函数,且在(0,y)单调递减C.是偶函数,且在(0,内)单调递增D.是偶函数,且在Qy)单调递减【分析】先检验/(-X)与/(x)的关系即可判断奇偶性,然后结合事函数的性质可判断单调性.【解答】解:因为=v-g,则f(-x)=一X3+4=-/(x)»即/(%)为奇函数,X根据幕函数的性质可知,y=V在(0,+00)为增函数,故y=二在(0,+00)为减函数,%=-二在(°,内)为增XX函数,所以当>0时,/(X)=X3-4单调递增,X故选:A.【跟踪训练4-2】(2020和平区二模)已知f(x)是定义在R上的偶函数,且在区间(-oo,0上单调递增,若实数a满足了(2喝")>/(-应),则a的取值范围是.【分析】根据函数奇偶性和单调性之间的关系,即可得到结论.【密答】解:因为f(x)是定义在R上的偶函数,且在区间(-8,0上单调递增,根据偶函数的对称性可知,/(X)在(O,÷oo)上单调递减,因为/(2嘀")>/(-应),所以2"w<,即l0g3<,解可得,0v<6故答案为:(0,有)【跟踪训练4-3】(2020江苏模拟)已知f(x)是定义在R上的奇函数,且对任意实数X恒有/(x+2)=-f(x),当x0,2时,f(x)=x2-2x.(1)求证:函数/(x)的周期是4;(2)求/(2017)+/(2018)+/(2019)+/(2020)的值;(3)当xt2,4时,求f(x)的解析式.【分析】(1)结合已知及周期的定义即可求解;(2)结合已知周期性及已知区间上的函数解析式进行转化,代入可求;(3)先把所求区间上的变量进行转化到已知区间上,然后结合奇函数的性质可求.【解答】解:(1)证明:因为/(x+4)=)x+2)+2=-(x+2)=(x),故函数的周期7=4;(2) /(2017)+/(2018)+/(2019)+/(2020)=f(1)+f(2)+/(3)+f(4)=/(I)+f(2)+/(-1)+/(0)=/(1)+f(2)-/(1)+/(0)=/(2)=0,(3)当xe2,4时,-tw-4,-2,所以喷*-x2,所以/(4x)=(4幻2-2(4力=f-6x+8=/(X)=-/(幻,所以f(x)=-f+6x-8,x2,4.【名师指导】函数性质综合应用问题的常见类型及解题策略(1)函数单调性与奇偶性的综合.注意函数单调性及奇偶性的定义,以及奇、偶函数图象的对称性.(2)周期性与奇偶性的综合.此类问题多考查求值问题,常利用奇偶性及周期性进行变换,将所求函数值的自变量转化到已知解析式的函数定义域内求解.(3)单调性、奇偶性与周期性的综合.解决此类问题通常先利用周期性转化自变量所在的区间,然后利用奇偶性和单调性求解.

    注意事项

    本文(第7讲函数的奇偶性与周期性(教师版).docx)为本站会员(夺命阿水)主动上传,课桌文档仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知课桌文档(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-1

    经营许可证:宁B2-20210002

    宁公网安备 64010402000986号

    课桌文档
    收起
    展开