毕业设计(论文)-V-610空气往复压缩机设计.doc
学号: 毕业设计(论文) 题 目 V6/10空气往复压缩机设计 学 生 学 院 专 业 班 级 机电一体化 校内指导教师 专业技术职务 校外指导老师 专业技术职务 毕业设计(论文)V6/10空气往复压缩机设计摘要:往复式压缩机是工业上使用量大、面广的一种通用机械。V型压缩机是往复活塞式压缩机的一种,属于容积式压缩机,是利用活塞在气缸中运动对气体进行挤压,使气体压力提高。热力计算、动力计算是压缩机设计计算中基本,又是最重要的一项工作,根据任务书提供的介质、气量、压力等参数要求,经过计算得到压缩机的相关参数,如级数、列数、气缸尺寸、轴功率等,经过动力计算得到活塞式压缩机的受力情况。活塞式压缩机热力计算、动力计算的结果将为各部件图形以及基础设计提供原始数据,其计算结果的精确程度体现了压缩机的设计水平。研究工作目的是为了使V型压缩机具有更好的机械性能,提高机械效率,减小能耗,延长使用寿命。通过压缩机动力的计算,机组、构件尺寸的不断修改,对以往压缩机出现的常见故障进行了技术改进,比如:排气量不足;气缸、活塞、活塞环磨损严重、超差、使有关间隙增大,泄漏量增大,影响到了排气量;不正常响声等一系列的问题进行改进。最终设计出这一款满足用户要求,体积小、工作效率高、使用寿命长的V-6/10空气往复压缩机。关键词:活塞式压缩机; 热力计算; 动力计算;气缸;曲轴The design of V6/10 air reciprocating compressorAbstract: Reciprocating compressor is a common type machine, used in the industry .V- type of piston compressors is a kind of reciprocating compressor, belong to the compressor , utilize the pistons in the cylinder moving to squeeze on the gas ,squeezed the gas pressure. Thermal calculation and dynamical computation is basic of compressor design calculation, is also an important woke, according to medium, displacement, pressure of task-book, by calculating getting related parameters of compressors, such as levels, columns, size of cylinder, shaft power, by dynamical computation getting stressed status of a piston type compression, due to reduce the vibration is very important. heat calculation and dynamical computation of the piston type compressor, which is providing design data. The calculations reflect exactly the design level of the compressor. Researching works is in order to the compressor have better mechanical properties, improve the efficiency and reduce energy consumption, prolong the machine the useful life. Through dynamical computation correction the size of crew, members, to improve the technical failure of the compressor, As shooting of low displacement, the cylinder, the piston, piston ring severity serious abrasion, so that increasing the related clearance, leakage rate, influence the displacement. Due to some problem of not normal noise improve. Eventually, work out this paragraph of a V-6 /10 reciprocating air compressor required to satisfy users, small volume, efficiency and long usage life.Keywords: piston compressor; thermal calculation; dynamical computation; cylinder; crankshaft目 录摘要·····································································目录·····································································1 引言····································································11.1 压缩机设计的意义·······················································11.2 活塞压缩机的工作原理···················································11.3 活塞压缩机的分类·······················································11.4 压缩机的发展前景·······················································11.5 压缩机设计说明·························································22 总体设计································································42.1 总体设计原则···························································42.2 结构方案的选择·························································42.2.1 气缸排列型式的选择···················································42.2.2 运动机构的结构及选择·················································52.2.3 级数选择和各级压力比的分配···········································52.2.4 转速和行程的确定·····················································63 热力计算································································73.1 确定各级的容积效率·····················································73.1.1 确定各级的容积系数···················································73.1.2 选取压力系数·························································73.1.3 选取温度系数·························································73.1.4 泄漏系数·····························································73.2 确定析水系数···························································73.3 各级的行程容积·························································83.4 气缸直径的确定·························································83.5 各级名义压缩比·························································93.6 新的容积系数···························································93.7新的相对余隙系数·······················································93.8活塞力的计算···························································93.9确定各级的排气压力····················································103.10计算轴功率···························································103.11驱动机的选择·························································104动力计算································································124.1压缩机中的作用力······················································124.1.1曲柄连杆机构的运动关系和惯性力·······································124.1.2 级综合活塞力计算··················································124.1.3 级综合活塞力计算··················································145 气缸部分的设计·························································155.1 气缸··································································155.1.1 结构形式的确定······················································155.1.2 级气缸主要尺寸的计算··············································155.1.3 级气缸的强度校核 ·················································155.1.4 级气缸的计算······················································175.1.5 级气缸的强度校核················································· 175.1.6 气缸材料····························································185.2 气阀··································································185.2.1 气阀的基本要求······················································185.2.2 阀的分类 ···························································195.2.3 阀设计的主要技术要求················································195.2.4 环状阀结构尺寸的选择················································195.2.5级上的气阀尺寸选择·················································195.2.6级上的气阀尺寸选择·················································225.3 活塞··································································245.3.1活塞的基本结构型式···················································245.3.2级活塞尺寸·························································245.3.3级活塞尺寸·························································255.3.4 活塞的材料··························································265.4 活塞销································································265.4.1活塞销的主要技术要求·················································265.4.2 I级活塞销尺寸························································265.4.3 级活塞销的尺寸····················································276 基本部件的设计·························································286.1机身、中体····························································286.2曲轴··································································286.2.1 曲轴结构的选择······················································286.2.2曲轴结构设计·························································286.2.3曲轴结构尺寸的确定···················································296.2.4曲轴的材料···························································296.2.5曲轴强度校核·························································296.3连杆··································································306.3.1连杆结构设计基本原则·················································306.3.2 级连杆尺寸计算····················································316.3.3级连杆杆体的强度校·················································346.3.4 级连杆尺寸计算····················································356.3.5级连杆杆体的强度校·················································376.3.6 连杆材料····························································377 轴承···································································387.1 滚动轴承及其结构确定··················································388 联轴器·································································399 填料和刮油器···························································409.1 填料的基本要求························································409.2 填料的结构····························································409.3 材料选择······························································4010 气路系统······························································4110.1空气滤清器···························································4110.2 液气分离器、缓冲器和储气罐···········································4111 润滑系统······························································4212 冷却系统······························································4312.1概述·································································4312.2 冷却介质的选择·······················································431.引 言压缩机是用来提高气体压力和输送气体的机械,属于将原动机的动力能转变为气体压力能的工作机。它的种类多、用途广,有“通用机械”之称。1.1压缩机设计的意义在石化领域8,往复式压缩机主要是向大容量、高压力、低噪声、高效率、高可靠性等方向发展;不断开发变工况条件下运行的新型气阀,提高气阀寿命;在产品设计上,应用热力学、动力学理论,通过综合模拟预测压缩机在实际工况下的性能;强化压缩机的机电一体化,采用计算机自动控制,实现优化节能运行和联机运行; 在动力领域,活塞式压缩机目前占有主要市场。但随着人们对使用环境及能耗、环保等方面要求的提高,螺杆和涡旋空气压缩机开始占有一定的市场; 在制冷空调领域,往复式制冷压缩机作为一种传统的制冷压缩机,适用于制冷量较广范围内的制冷系统。虽然目前它的应用还比较广泛,但市场份额正逐渐减小。1.2活塞压缩机的工作原理3活塞式压缩机包括:构架包括含有放电室和冷却室的缸盖。冷却室是邻近放电室并包围着放电室。构架还包括了一个吸入室,压缩室和一个曲柄室。冷却室是孤立于吸入室。气体是从构架外面进入吸入室。可旋转旋转轴支持整个构架。凸轮安置在曲柄室内。活塞是通过凸轮连接到旋转轴。旋转轴的旋转转换为活塞的往复。密封构件切断冷却室和外部的沟通,使得压缩机气缸盖密封。通过引入一个互连的冷却室和曲柄室。当曲轴被电动机带动旋转时,通过连杆使活塞在汽缸内往复运动。在汽缸顶部外圈装有环形吸气阀片,顶部中央则装有环形排气阀片,阀片上均设有气阀弹簧。汽缸内的活塞由上向下移动时,缸内容积增大,压力下降,于是吸气管中压力为P1的空气便顶开吸入阀进入缸内,直到行程的下死点为止,这样便完成了一个吸入过程。当活塞从下死点向上回行时,被吸入的气体受到压缩,压力因而升高,吸气阀片在缸内气体压力和弹簧的作用下迅速关闭,活塞继续上行,缸内容积不断减小,压力升高,当缸内压力升到P2时,气体便顶开排气阀进入排气管路,活塞继续上行,直到上死点。当活塞由上死点向下死点回行时,排气阀在弹簧和排气管中压力的作用下关闭,压缩机又开始下一个吸气过程。如此周而复始,完成循环。1.3活塞压缩机的分类 往复压缩机分类方法很多7:1、按在活塞的一侧或两侧吸、排气体,可分为单动和双动往复压缩机;2、按气体压缩次数可分为单极、双极和多级压缩机;3、按压缩机所产生的最终压力可分为低压、中压和高压压缩机;4、按排气量可以分为小型、中性和大型压缩机;5、按压缩气体的种类可分为:空气压缩机、氨压缩机、氢压缩机等。1.4压缩机的发展前景随着近几年经济的飞跃发展,行业集中度有所提高,供货进一步向大企业集中,气体压缩机产业向布局逐步合理的新局面发展。通过经济战略性重组的推进,不少劣质企业退出,优秀企业已找准定位,突出主业,不断做大做强,达到强强联合,承担起国家重大技术装备项目。在相关政策方面,为应对全球性金融危机对我国经济的影响,早在09年年初,国家已经制定了一系列的刺激经济方案,重点调整振兴包括石化、冶金等气体压缩机的下游产业在内的十大产业。这些措施对气体压缩机产业的发展起到了积极的影响,这也是2009年下半年压缩机行业经济逐渐利好的主要原因。在开拓国际市场方面,压缩机行业应积极而谨慎地探索自己的国际化道路。目前,压缩机行业国际化步伐缓慢,尤其是在2009年一整年中,压缩机出口形势都不容乐观,这主要表现在国内压缩机行业技术发展水平与国外同类企业存在一定差距,尤其是目前还没有形成真正意义上的具有国际竞争力的大型国际企业集团。未来三年,我国石油、化工、冶金、船舶、环保、清洁能源等行业将进一步发展,压缩机市场需求前景依然看好。如大推力往复式压缩机、工艺螺杆压缩机、大排量无油压缩机、高压大排量压缩机、机车配套压缩机、低噪声船用压缩机等。2010年,是压缩机行业发展的新起点,预计行业未来呈现出新的发展态势。首先是结构调整将有重大突破。当前我国压缩机行业存在一系列深层次的结构性矛盾,包括总体产能过剩,低水平产能比重过大;企业规模小而且分散,产业集中度低;生产力布局不合理现象依然存在;企业节能减排的任务重;科技创新能力不强;资源控制力不强,保障体系建设滞后等。这些深层次的结构性矛盾,决定了2010年压缩机行业必须下大力量,突出抓好结构调整,实现产业升级,认真解决影响压缩机行业发展的重大问题。第二,行业内要大力推动共性技术研究开发,掌握核心技术、关键技术的自主知识产权。当前,压缩机行业共性技术的科研经费投入不足,研究开发力量薄弱。2010年,各企业应加大在我国重点培育自主知识产权的技术装备研发力量。可以有计划、有步骤地加强国家重点实验室、国家工程技术研究中心、行业科研院所等共性技术研究开发平台的建设,重点支持原创性技术、共性技术及战略性关键技术的研究开发,并培养一支既精通基础技术又熟悉行业技术的高科技人才队伍,努力掌握核心技术、关键技术和重要产品的自主知识产权。第三,进入加快发展制造服务业阶段。当前,压缩机行业存在一些不利于产业发展的缺陷,如缺少高端技术,企业规模偏小等。面临这些问题和激烈的市场竞争,压缩机企业极需提高自身的核心竞争力,转变增长方式。在制造过程中重视服务,从市场调研、售后,直到产品报废回收,努力为客户提供以知识密集、附加值高为特征的服务项目,则是压缩机企业实现可持续发展的一个关键内容。现代服务业大部分是以人力资本和知识资本作为其主要投入,这对压缩机企业在解决发展、升级问题的同时,提升竞争力也具有重要支撑作用。与国外往复式压缩机技术水平相比,我国的主要差距为基础理论研究差,产品技术开发能力低,工艺装备和实验手段后,产品技术起点低,规格品种、效率、制造质量可靠性差。另外,技术含量高和特殊要求的产品还满足不了国内需求。1.5压缩机设计说明本说明书包括活塞式压缩机的总体设计,热力、动力计算,主机和辅助设备的结构设计和计算,润滑,排气量调节以及安装调整等内容,还介绍了国内已经使用的各种活塞式压缩机的结构特点。此外,压缩机设计计算时所涉及的单位换算,常用数据、公式和材料,气体特性图表。由于本人的专业知识有限,本设计的误差和缺点在所难免,希望老师批评指正,以期在以后加以充实完善。2总体设计设计依据及参数公称容积流量: 6 m3/min压缩介质: 空气进气压力: 大气压公称排气压力: 1 MPa(表)排气温度: 1802.1总体设计原则设计活塞压缩机应符合以下基本原则3: a.满足用户提出的排气量、排气压力,及有关使用条件的要求。 b.有足够长的使用寿命(应理解为压缩机需要大修时间间隔的长短),足够高的使用可靠性(应理解为压缩机被迫停车的次数)。 c.有较高的运转经济性。 d.有良好的动力平衡性。 e.维护检修方便。 f.尽可能采用新结构、新技术、新材料。 g.制造工艺性良好。 h.机器的尺寸小、重量轻。2.2结构方案的选择压缩机的结构特点主要体现在两方面,即气缸排列的型式(指气缸中心线的排列位置)和运动机构的结构。2.2.1气缸排列型式的选择根据气缸排列的型式不同,有立式压缩机、卧式压缩机、对称平衡型压缩、对置型压缩机及角度式压缩机。角度式压缩机,气缸中心线具有一定的角度,但不等于零度和180。按气缸中心线的位置不同,又可以分为W型、V型(如图1)、L型和扇型。由于本设计排气量和排气压力比较小,选择角度式中的V型压缩机,使其具有较好的平衡性,同一曲拐上相邻的汽缸中心线夹角做成90°。它的好处:1> 各列的一阶惯性力的合力,可用装在曲轴上的平衡重达到大部分或完全平衡,因此,机械可有较高的转数。2> 气缸彼此错开一定的角度,有利于气阀的安装和布置,因而使气阀的流通面积有可能增大(相对于立式压缩机而言),中间冷却器和级间管道可以直接装在机械上,结构紧凑。3> 可以将若干列的连杆连结到同一曲拐上,曲轴的拐数可减少,机械的轴向长度可缩短,因此主轴颈可以采用滚动轴承。2.2.2运动机构的结构及选择 活塞式压缩机的运动机构有:无十字头和带十字头28两种,本设计为无十字头。选择无十字头的理由是:结构简单、紧凑,机械高度较低,相应的机械重量较轻,一般不需要专门的润滑机构。但是无十字头的压缩机只能作成单作用的,所以,气体容积的利用不充分(因为活塞与气缸之间,只在活塞的一侧形成工作腔),气体的泄漏量也比较大,气缸的工作表面所受的侧向力也较大,因而活塞易磨损,另外,气缸的润滑油量也难于控制。2.2.3级数选择和各级压力比的分配工业用的气体,有时需求较高的压力,需采取多级压缩。在选择压缩机的级数时,一般应遵循下列原则:使压缩机消耗的功最小、排气温度应在使用条件许可的范围内、机器重量轻、造价低。要使机器具有较高的热效率。则级数越多越好(各级压缩比越小越好)。然而级数增多,则阻力损失增加,机器总效率反而降低,结构也更加复杂,造价便大大上升。因此,必须根据压缩机的容量和工作特点,恰当地选择所需的级数和各级压力比。 是级中的相对压力损失,一般平均的相对压力损失值为1020%,取=20%,查图2得,0=2.75。总压缩比 取Z =2级根据工况的需要,选择级数为两级,按照等压力比分配的原则,1=2=111/2=3.32,但为使第一级由较高的容积系数,第一级的压力比取稍低值,各级名义压力及压力比见表1。表1 各级名义压力及压力比级数吸气压力/MPa0.10.32排气压力/MPa0.321.1压力比3.203.442.2.4转速和行程的确定 转速,行程和活塞平均速度的关系: 小型压缩机为使结构紧凑,而只能采用较小行程,取s=100mm,确定压缩机的转速n=980r/min则,符合活塞平均速度。3热力计算3a. 压力在热力计算中使用的压力都是绝对压力,为统一起见,本说明除特别注明外,压力均指绝对压力。 b. 温度在热力计算中所采用的是绝对温度,它以K来表示。 绝对温度与摄氏温度之间具有以下关系: c. 比容单位重量气体所占容积。 理想气体在不同温度和压力下的重量。按下式计算: 3.1确定各级的容积效率313.1.1确定各级的容积系数由于P=1.1MPa,则=0.070.12,排气量为qV=6m3, 则=0.0350.05,所以,各级相对余隙容积1=0.09 2=0.11;膨胀指数 m 1=1.2 m2=1.25 3.1.2选取压力系数p1=0.96 p2=0.993.1.3选取温度系数t1=0.95 t2=0.963.1.4 泄漏系数 取值在0.900.98范围,则l1=0.972 l2=0.974 综上所述, 3.2确定析水系数第一级无水分析出 =1.0第二级 干气系数 =0.8 =1.0取定一级进气温度30o,二级进气温度35o。由表2可得, 表2 饱和水蒸汽在170时的压力P(kgf/cm2)与重度(kgf/m2)当T1=30o时, Psa1=4325Pa;当T2=35o ,则,Psa2=5504 Pa,则: 3.3各级的形成容积 3.4汽缸直径的确定 (一)当采用两级单作用双气缸,水冷方式时,取D1=325mm,由于直径太大,舍弃 (二)当采用两级单作用四气缸,水冷方式时,得,D1=0.227m 取D11=230mm同理 D2=0.1272m 取D22=130mm3.5各级名义压缩比 取进气相对压力损失s1=4.0% ,排气相对压力损失d1=4.2%;s2=1.9% d2=3.0% 表3 各级进气、排气压力与实际压力比级次公称压力排气损失实际压力实际压比Ps/MPaPd/MPasdps/MPaPd/MPa0.10.320.040.0420.0960.333123.470.321.10.0190.030.3141.1333.613.6新的容积系数 级气缸容积系数 级气缸容积系数 3.7新的相对余隙系数 3.8活塞力的计算表4 盖侧与轴侧活塞工作面积级次轴侧:盖侧:Ac=2× D2Aw1=0.0817Ac1=0.0831Aw2=0.0251Ac2=0.0265 表5 止点气体力计算列次下止点上止点-Fw1=PaAw1- ps1Ac1=0.19kNFc1=PaAw1-pd1Ac1=-19.51KN-Fw2=PaAw2-ps2Ac2=-5.81KNFC2=PaAw2- pd2Ac2=-27.51KN3.9确定各级的排气压力 取k=1.4 近似n1=1.35 n2=1.4 取Ts1=303k Ts2=308k 3.10计算轴功率 Ni=15.99+16.17=32.16kW。3.11驱动机的选择活塞式压缩机的驱动包括驱动机和传动装置。驱动方式和压缩机的结构方案和主要参数的选择有着密切的关系,在选择压缩机结构方案和主要参数时,应该同时考虑驱动方式的选择。驱动活塞式压缩机的却大多数是交流电动机,而交流电动机中又以鼠笼式异步电动机为最多。中、小功率的鼠笼式电动机可按我国电动机系列(JS、JK、JSQ等)选取。不管是异步电动机还是同