混凝土结构设计原理第6章经典PPT.ppt
第六章 受压构件,第六章 受压构件,定义:以承受压力为主的构件。如柱、墙、桥墩等,分类,第六章 受压构件,第六章 受压构件,第六章 受压构件,6.1 受压构件的构造要求自学(掌握),第六章 受压构件,1、形状(1)一般 采用方形、矩形截面;(2)单层工业厂房的预制柱常采用I字形截面;(3)圆形截面主要用于桥墩、桩和公共建筑中的柱。2、截面尺寸,6.1.1 截面形状和尺寸,(1)最小截面尺寸:250250mm(2)长细比要求:l0/b30、l0/h25及l0/d25。(3)模数尺寸:边长800mm时,以50mm为模数,边长 800mm时,以100mm为模数。,第六章 受压构件,1、混凝土:应采用强度等级较高的混凝土;一般结构常用C25C40;高层建筑常用C50C60。2、钢筋:常用HRB335和HRB400。,6.1.2 材料强度,1、最小配筋率(1)规定最小配筋率的理由 一是防止混凝土受压脆性破坏;二是承担偶然的附加弯矩、混凝土的收缩和温度变化产生的拉应力。(2)最小配筋率的取值,6.1.3 纵向钢筋,全部纵向钢筋的配筋率:建工 0.6%。道桥 0.6%(C50)0.5%(C45)一侧纵向钢筋的配筋率 0.2%。2、最大配筋率 全部纵筋配筋率不宜大于5%。,第六章 受压构件,4、纵向受力钢筋的直径:不宜小于12mm;宜根数少而直径粗。,3、纵向受力钢筋的根数:矩形截面不得少于4根;圆形截面不宜少于8根,不应少于6根。,5、柱侧面的纵向构造钢筋:h600mm时,应设直径1016mm的纵向构造钢筋。,第六章 受压构件,7、纵向受力钢筋的净间距:50mm。,8、纵向受力钢筋的中距:建工 300mm。道桥 350mm。,6、纵向钢筋的保护层厚度:一般为30mm。,1、箍筋形式:采用封闭式。2、箍筋间距:400mm;截面的短边尺寸;15d。3、箍筋直径:d/4 建工 6mm。道桥 8mm。4、当柱中全部纵筋的配筋率3%时,,第六章 受压构件,6.1.4 箍筋,箍筋直径 8mm;箍筋间距 10倍纵筋最小直径,且 200mm。箍筋末端应作成135的弯钩,弯钩末端平直段长度 10箍筋直径,第六章 受压构件,第六章 受压构件,第六章 受压构件,轴心受压承载力是正截面受压承载力 的上限。本节分普通箍筋柱和螺旋箍筋柱两种情况。,6.2 轴心受压构件正截面受压承载力,第六章 受压构件,第六章 受压构件,纵筋的作用,(1)直接受压,提高柱的承载力;(2)承担偶然偏心等产生的拉应力;(3)改善破坏性能(脆性);(4)减小持续压应力下混凝土收缩和徐变的影响。,箍筋的作用,(1)固定纵筋,形成钢筋骨架;(2)承担剪力;(3)约束混凝土,改善混凝土的性能;(4)给纵筋提供侧向支承,防止纵筋压屈。,6.2.1 轴心受压普通箍筋柱的正截面受压承载力,第六章 受压构件,1、轴心受压短柱的受力性能,第六章 受压构件,(1)短柱的概念:l0/b8、l0/i28,(2)短柱的受力性能,第六章 受压构件,2、轴心受压长柱的受力性能,第六章 受压构件,(1)受力时,N不可避免的初始偏心,引起的侧向弯曲、附加弯矩不可忽略。,(2)破坏时,凸边出现横向裂缝,砼拉裂;凹边出现纵向裂缝,砼压碎,构件破坏。,3、配普通箍筋柱的承载力计算,第六章 受压构件,(2)计算公式,(1)计算简图,建工,道桥,4、柱的计算长度-l0,第六章 受压构件,(1)理想支承时:柱的计算长度-l0,第六章 受压构件,(2)实际柱的计算长度l0不讲(了解),(见GB50010第7.3.11条。具体有以下三条规定),(a)刚性屋盖单层房屋排架柱、露天吊车柱和栈桥柱,第六章 受压构件,(b)一般多层房屋中梁柱为刚接的框架结构柱,(c)水平荷载产生的弯矩设计值占总弯矩设计值的75%以上时,框架柱的计算长度取下列两公式中的较小值:,本页不讲(了解),6.2.2 配螺旋箍筋或焊接环式箍筋柱的受压承载力计算,第六章 受压构件,1、配螺旋箍筋柱的受力性能,2、配螺旋箍筋柱的轴心受压承载力计算公式推导,dcor,代 入,推 得,螺旋箍筋换算成相当的纵筋面积,a-间接钢筋对砼约束的折减系数 当混凝土C50时,取a=1.0;当混凝土为C80时,取a=0.85,其间线性插值。k-间接钢筋影响系数;k 2 a,建工,道桥,区别,建工公式,道桥公式,建工与道桥公式的区别,第六章 受压构件,第六章 受压构件,3、公式说明(道桥的规定与建工相同),遇下列情况之一,按普通箍筋柱计算,螺旋箍筋的换算截面面积Ass0 0.25 As(As全部纵筋面积)螺旋箍筋的间距 80mm;dcor/5;40mm。螺旋箍筋的直径 6mm(建工);8mm(道桥)d/4;,第六章 受压构件,4、螺旋箍筋的构造规定,6.3.1 破坏形态,试验表明:偏心受压短柱有受拉破坏和受压破坏两种形态;影响破坏形态的主要因素是偏心距e0和纵向钢筋配筋率。,第六章 受压构件,6.3 偏心受压构件正截面受压破坏形态,As先屈服;压区混凝土后压碎。延性破坏。破坏特征与适筋梁相似,第六章 受压构件,(1)发生条件:偏心距e0较大,As的数量合适。,(2)破坏特征,(1)发生条件:(a)相对偏心距e0/h0较小;(b)相对偏心距e0/h0较大,但As的数量过多。,第六章 受压构件,2、受压破坏-小偏心受压破坏,离纵向力较近一侧的混凝土压碎,钢筋屈服;离纵向力较远一侧的钢筋不屈服。脆性破坏。破坏特征与超筋梁相似 第二种情况在设计时应予避免。,第六章 受压构件,(2)受压破坏的特征,受拉钢筋屈服与受压区边缘混凝土达到ecu 同时发生。与适筋梁和超筋梁的界限类似。,第六章 受压构件,界限破坏,6.3.2 长柱的正截面受压破坏,第六章 受压构件,(1)l0/h较大时,纵向弯曲不能忽略。(2)右图中,N ei 称一阶弯矩,N f 称二阶弯矩。,1、纵向弯曲引起二阶效应,(3)长细比l0/h很大时,发生失稳破坏;长细比l0/h一定时,发生材料破坏。,y,f,l0,ei,(a)侧向挠度 f 很小,可忽略。(b)M随N线性增长。(c)最后为材料破坏。,第六章 受压构件,2、三种破坏类型(1)短柱(l0/h5),(a)侧向挠度 f 不能忽略。(b)M随N非线性增长。(c)最后为材料破坏。(d)轴向承载力低于相同 情况的短柱的承载力。,第六章 受压构件,(2)长柱(l0/h=530),(a)侧向挠度 f 的影响 很大。(b)最后为失稳破坏。(c)细长柱不应采用。,第六章 受压构件,(3)细长柱(l0/h30),第六章 受压构件,6.4 偏心受压长柱的二阶弯矩,无侧移,有侧移,1、的定义,6.4.3 偏心距增大系数,y,f,l0,ei,第六章 受压构件,再考虑修正系数z1 影响系数z2,后得,第六章 受压构件,第六章 受压构件,3、的计算公式,1、界限破坏的特征:受拉钢筋屈服与受压区边缘混凝土达到ecu 同时发生。,第六章 受压构件,6.5 矩形截面偏压构件正截面受压承载力计算公式,2、相对界限受压区高度b,3、大小偏心的分界:b 为大偏心受压 b 为小偏心受压,6.5.1 大小偏心破坏的界限,(1)计算简图 等效矩形应力图。,第六章 受压构件,1、大偏心受压构件的计算,6.5.2 偏压构件的正截面承载力,(2)计算公式,其中,e0=M/N,第六章 受压构件,(3)计算公式的条件,x xbh0 x2as,注:道桥无ea,(1)计算简图,2、小偏心受压构件的计算,(2)计算公式,第六章 受压构件,第六章 受压构件,(3)钢筋应力ss的计算,(a)由试验可知:小偏压时,ss与x 基本成线性关系。,(b)推导ss的计算公式 由右图可知:x=b1 xcb,ss=fy x=b1 h0,ss=0,(c)计算公式,可能发生As一侧混凝土首先压坏。此时应按下式验算:,e=0.5h-as-(e0-ea)h0=h-as,第六章 受压构件,若当Nfcbh时,式中,max,6.6 不对称配筋矩形截面偏压构件承载力的计算方法,第六章 受压构件,截面设计,截面复核,两类问题,有,6.6.1 截面设计,大小偏心受压的分界,近似判据,真实判据,ei 0.3h0,大偏心ei 0.3h0,小偏心,b,大偏心 b,小偏心,第六章 受压构件,由上表可知:(hei/h0)b=0.2840.322 故取hei/h0=0.3为近似分界条件,近似判据的由来了解,将x=xb代入大偏压计算公式可推得,,相对界限偏心距,第六章 受压构件,垂直于弯矩作用平面的受压承载力的验算,第六章 受压构件,偏压构件的计算类型,计算类型,对称配筋无As已知求As,其余相同,第六章 受压构件,条件不够时,结合受力特性或经济性补充条件后求解。,类型很多,不管是哪一类型,始终是利用基本公式和公式条件求解。,第六章 受压构件,1、大偏压截面设计,(1)计算简图,(2)计算公式,第六章 受压构件,(3)计算公式的条件,x xbh0 x2as,(4)As、As应满足最小配筋率:,As 0.002bh;As 0.002bh,As+As 0.006bh,(5)As、As应满足最大配筋率:,As+As 0.05bh,第六章 受压构件,(6)截面设计分两种类型 类型一:As、As均未知;类型二:As已知,As未知,(7)类型一:已知:bh;fc、fy,fy;l0/h;N、M,求As、As,分析:,三个未知数,As、As和 x 怎么办?,措施:,令x=xbh0,求解:利用两个基本公式可得,求解:先由基本公式2求 x,第六章 受压构件,(8)类型二:已知bh;fc、fy,fy;l0/h;N、M,As,求As,分析:,未知数:As、x,若2as x xbh0,则:,若x xbh0?,若As rminbh?则取As=rminbh,按As、As均未知转类型一,第六章 受压构件,取x=2as,计算As,则:,若x 2as?,2、小偏压截面设计,第六章 受压构件,(1)计算简图,(2)计算公式,公式中:,(6)截面设计分两种类型(即类型三和类型四)类型三:As、As均未知;类型四:As已知,As未知,第六章 受压构件,建工当Nfcbh时,措施:,第六章 受压构件,确定As后,,求解:,由基本公式先求x,根据求得的x,分以下四种情况,求As,求解:先由基本公式2求x,根据x,分以下四种情况,求As,(8)类型四:已知:As,求As,分析:,未知数:As、x,第六章 受压构件,6.6.2 不对称配筋截面复核,两种类型:已知bh;fc、fy,fy;l0/h;As、As,e0,求Nu 或已知bh;fc、fy,fy;l0/h;As、As,N,求Mu(e0),第六章 受压构件,已知N,求Mu时的判别条件 N Nb-大偏心受压 N Nb-小偏心受压,1、大偏心受压的截面复核,(1)分两种类型(类型五:已知e0,求Nu;类型六:已知N,求Mu),暂取z1=1,求ei,hei0.3h0,No转小偏心-即类型七,由基本公式消去N求出x,若2as x xbh0,若x 2as,求解步骤,yes,(4)类型六:已知bh;fc、fy,fy;l0/h;As、As,N,求Mu,第六章 受压构件,分析:Mu=Nue0,故关键是求e0,求Nb=1fcbbh0+f yAs-fyAs,N Nb,No转小偏心(即类型八),求x(由基本公式1),求e(由基本公式2),yes,若x 2as,若2as x bh0,求e(由x 2as时的公式),求解步骤,第六章 受压构件,2、小偏心受压的截面复核,(1)分两种类型(类型七:已知e0,求Nu;类型八:已知N,求Mu),求解步骤,(3)类型八:已知:bh;fc、fy,fy;l0/h;As、As,N,求Mu,第六章 受压构件,分析:Mu=Nue0,所以求Mu的关键是求e0,八种类型均应作垂直于弯矩作用平面的轴心受压承载力的验算,第六章 受压构件,x与钢筋应力之间的关系总结,第六章 受压构件,As,As,ss,ss,0 x 2as,M,N,2as x xbh0,xbh0 x(2b1-xb)h0,(2b1-xb)h0 x h,x,(1)实际工程中,受压构件常承受变号弯矩。(2)对称配筋不易在施工中产生差错。,第六章 受压构件,6.7 对称配筋截面的正截面承载力,对称配筋的概念,截面对称,配筋对称即As=As,fy=fy,as=a s,应用对称配筋的原因,as,as,As,As,2、对称配筋大偏心受压截面设计,与非对称配筋时相仿。略,3、对称配筋小偏心受压截面设计,有迭代法和规范公式法两种,(1)迭代法 见建工教材P162(1)(4).略,(2)规范公式法 见建工教材P163式(6-45)(6-46)。,第六章 受压构件,即下式:,第六章 受压构件,x 的计算公式的说明 由两个基本方程求解对称配筋小偏心受压构件时,出现如下x 的三次方程,上式的计算很麻烦。为简化计算,取x(1-0.5x)=0.43,即得x的计算公式,6.5 矩形截面正截面承载力计算,第六章 受压构件,6.7.2 对称配筋截面复核:,除对称配筋的概念外,其余均与非对称配筋截面复核相同,建工与道桥的区别-针对单向偏压构件的计算,1、概念上的区别有三点,一是道桥无附加偏心距;二是道桥与建工有关1的计算公式不同;三是道桥与建工有关偏压破坏发生在As一侧的条件不同。,2、计算方法的区别有一点,在已知e0 求Nu时建工:须先取 1=1,待求得Nu后再复核 1。若不相符,以新求得的 1再次循环。道桥:不需要如此,第六章 受压构件,3、建工与道桥的计算公式和计算过程的比较,建工,道桥,除下列相关参数代换外,其余均相同,建工,道桥,第六章 受压构件,6.8 工形截面正截面承载力计算(自学),第六章 受压构件,一、,按宽度为bf的矩形截面计算。,二、,见建工教材P165171,第六章 受压构件,三、,计算时应计入受压较小边缘受压部分的作用。,四、对非对称配筋的小偏心受压构件,当NfcA 时,尚应按下列公式进行验算:即离N较远侧先发生受压破坏,(1)曲线上的一点:表示截面处于极限状态。,(2)三个特征点(A、B、C),第六章 受压构件,6.9 Nu-Mu相关曲线及其应用,曲线内侧的一点:表示截面未达到极限状态。曲线外侧的一点:表示截面承载力不足。,A点:Mu0,Nu最大,轴心受压。B点:Mu最大,界限破坏。C点:Nu0,纯弯。,CB段:Mu随N的增加而增加;AB段:Mu随N的增加而减小。,CB段:为受拉破坏;AB段:为受压破坏。,第六章 受压构件,(3)Mu的变化规律,(5)Nb与配筋率无关(指对称配筋时),第六章 受压构件,(4)曲线变化趋势:随配筋率的增加,曲线向外侧增大。,6.10 双向偏心受压构件的正截面承载力计算自学,第六章 受压构件,6.10.1 基本计算公式建工规范方法之一了解,2、破坏准则,第六章 受压构件,1、划分为钢筋单元 和混凝土单元,3、计算 几何条件 平截面假定,4、计算s物理条件 s曲线,第六章 受压构件,正截面承载力计算一般公式,需用计算机迭代求解道桥规范无此方法,N-Mx-My相关曲面,第六章 受压构件,6.10.2 简化计算公式规范方法之二了解,适用性 具有两个相互垂直对称轴的截面,第六章 受压构件,建工计算公式,公式采用弹性阶段应力叠加方法推导得到。,道桥计算公式,6.11 偏心受压构件的斜截面受剪承载力-道桥无,6.11.1 轴向压力对受剪承载力的影响,(1)延缓了斜裂缝的出现和开展;(2)斜裂缝角度 减小;(3)混凝土剪压区高度增大。,第六章 受压构件,受剪承载力与轴压力的关系,第六章 受压构件,6.11.2 偏心受压构件受剪承载力的计算公式,l 的计算:对各类结构中的框架柱:l=M/(Vh0);对框架结构中的框架柱,反弯点在层高范围内时:l=Hn/(2h0),第六章 受压构件,N0.3fcA,当l3时,取l=3;,对其它偏心受压构件:承受均布荷载:l=1.5;承受集中荷载:l=a/h0,当l3时,取l=3;,截面限制条件,构造配箍条件链接柱中箍筋的构造规定,第六章 受压构件,第六章 受压构件,本章小结,一、本章中受压构件的受力形态有轴心受压、单向偏心受压、双向偏心受压、单向压剪二、受力性能、设计计算和构造措施受力性能:轴心受压:普通箍筋柱;螺旋箍筋柱,单向偏压:大偏心受压 小偏心受压 短、长和细长三种破坏(l0/h)e0、ea、ei、,