欢迎来到课桌文档! | 帮助中心 课桌文档-建筑工程资料库
课桌文档
全部分类
  • 党建之窗>
  • 感悟体会>
  • 百家争鸣>
  • 教育整顿>
  • 文笔提升>
  • 热门分类>
  • 计划总结>
  • 致辞演讲>
  • 在线阅读>
  • ImageVerifierCode 换一换
    首页 课桌文档 > 资源分类 > DOCX文档下载  

    世界经济论坛-扩大可持续航空燃料供应:克服欧洲、美国和中东的障碍(英)-2024.3.docx

    • 资源ID:1380987       资源大小:681.57KB        全文页数:33页
    • 资源格式: DOCX        下载积分:5金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要5金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    世界经济论坛-扩大可持续航空燃料供应:克服欧洲、美国和中东的障碍(英)-2024.3.docx

    WQR1.DECONOMICFQRUMIncollaborationwithKearneyScalingUpSustainableAviationFuelSupply:OvercomingBarriersinEurope,theUSandtheMiddleEastINSIGHTREPORTMARCH2024Images:GettyImagesContentsForeword3Executivesummary4Introduction51 ScalingSAFforEurope111.1 Europeansituationandchallenges121.2 Keyactionstotake131.2.1 Collaboration131.2.2 Finance141.2.3 Policy152 ScalingSAFfortheUS172.1 USsituationandchallenges182.2 Keyactionstotake192.2.1 Collaboration192.2.2 Finance212.2.3 Policy223 ScalingSAFfortheMiddleEast233.1 MiddleEastsituationandchallenges243.2 Keyactionstotake243.2.1 Cross-industryllaboration253.2.2 Improvingefficiencyinexistingrefineries253.2.3 Power-to-liquiddeployment253.2.4 Governmentandregulatorengagement263.2.5 Publicawarenessandeducation26Conclusion:WhatwillittaketoscaleSAFglobally?27Contributors29Acknowledgements29Endnotes31DisclaimerThisdocumentispublishedbytheWorldEnomicForumasacontributiontoaproject,insightareaorinteraction.Thefindings,interpretationsandnclusionsexpressedhereinarearesultofacollaborativeprocessfacilitatedandendorsedbytheWorldEomicForumbutwhoseresultsdonotnecessarilyrepresenttheviewsoftheWorldEconomicForum,northeentiretyofitsMembers,Partnersorotherstakeholders.©2024WorldEconomicForum.Allrightsreserved.Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,includingphotopyingandrecording,orbyanyinformationstorageandretrievalsystem.March2024ScalingUpSustainableAviationFuelSupply:OvercomingBarriersinEurope,theUSandtheMiddleEastForeword1.aiaBarbaraHead,ClimateStrategy,WorldEomicForumClaudiaGaleaGlobalSustainabilityDirector,KeameyTheWorldEconomicForumandAirportsCouncilInternational(ACI)Worldareco-leadingtheAirportsofTomorrowinitiative,whichseekstoaddresstheenergy,infrastructureandfinancingneedsoftheaviationindustry'stransitiontonet-zerocarbonemissionsby2050.Theinitiativehasconvenedexecutivesfromacrosstheaviationsectorwithanaimofacceleratingthemovetowardsincreasedsustainabilityandresilience.Thisreportpresentskeyfindingsfromourworkonsustainableaviationfuel(SAF)in2023.WeshowcasecriticaltechnologiesforSAFscalingandtheiradvantages,aswellasthegreatestchallengesatthistime.FutureSAFvolumeshavebeenanalysedandoptimalglobalproductionhubsidentifiedtosatisfythisemergingdemand.Furthermore,wefocusedonadequateregulationandpolicytoenableglobalSAFscaling,aswellasinsightsandimportantthemesforspecificuntriesandregions.Thereportfocusesonthreeregions-Europe,theUSandtheMiddleEast-andntainsinsightsfromstakeholdersintheaviationandenergyindustriesaswellasthepublicsector.ThemaingoalistoprovideacomprehensiveoverviewoftheexistingchallengesforSAFadoptionandhighlightwhichactionsstakeholdersalongtheentirevaluechainshouldtaketomovetowards10%SAFin2030andsubsequentsectordecarbonizationby2050.ThisworkwasdevelopedbytheWorldEconomicForuminpartnershipwithKearney,ACIWorld,AirbusandArup.Wethankourpartnersandindustrysponsorsfortheirsupport.ExecutivesummaryTheaviationsectorfaceschallengesinscalingSAF5requiringcollectiveeffortstoacceleratetechnologydeployment,securedemandcertaintyandestablishconduciveregulatoryframeworks.Airtravelcontributes2-3%ofglobalCO2emissions,1primarilyduetoaircraftfossilfuelconsumption.Furthermore,theprojecteddemandforaviationfuelcouldsurgebyover50%by2050comparedto2019,increasingthissharesignificantly.2Despiterecognitionoftheimportanceofsustainableaviationfuel(SAF)indecarbonizingtheindustry,globalproductionremainsinsufficient,withannouncedprojectscoveringonly30-40%oftheaspirational10%ofglobalfuelsupplyin2030.Solvingthissupplyshortagerequiresdeployingexistinganddevelopingnoveltechnologiesinregionswithfavourableconditions.AppropriateregulationsandpoliciesarealsoneededtocreateaSAFmarketgiventhatSAFproductioniscurrentlytwotofivetimescostlierthanfossiljetfuel.3Europehasbeenleadingthewayonmanypoliciesaimedatadvancingthedecarbonizationofitseconomy,suchastheimplementationofemissionstradingsystems(ETS)andadoptingtheReFueIEUlegislation,committingtotangibleSAFmandatesofupto70%offuelsupplyby2050.4Stakeholdersarenowfocusingoncollaborationintechnologydevelopment,providingtransparentSAFpropertiesandcommittingtolong-termSAFagreements.Thepublicandprivatesectorswillneedtocometogethertounlockthesignificantinvestmentsrequiredtoscale.IntheUS,financialincentivesarestimulatingtechnologydevelopmentanddeployment.TheInflationReductionAct(IRA)containstaxcreditsforproducers.1.ocallegislation,especiallyonthewestcoast,aimstoattractproduction.Withoutmandates,theindustryislookingforpartnershipstoensurelong-termofftakesandtangiblerisk-sharingagreements.Extendingboththedurationandavailabilityoffederalincentivescanprovidegreaterplanningsecurityfornewproductionfacilities.IntheMiddleEast,localconditionsandtheregion'sroleasaglobalaviationhubarefavourablefortheproductionofSAF.Withcheaprenewableenergy,accesstofinanceandestablishedexportnetworks,theregioncouldbecomeahubforpower-to-liquid(Pt1.)fuels.However,withoutcomprehensiveandfavourableSAFregulation,playerscurrentlyfocusongreeningexistingfossilrefineriesandproducinglower-carbonaviationfuel(1.CAF).Increasedpublicawarenessandcloserpublic-privatecollaborationareimperative.Theregionwilllikelyadoptafast-followerrole,deployingtechnologyonceithasbeenprovenelsewhere.StakeholdersgloballyagreedthatthefollowingkeyactivitieswillenabletherapidscalingofSAF:- SAFandenergyproducersshouldfocusondeployingeffectiveSAFproductioncapacitiesandlookforlong-termdemandcertaintytoderisktherequiredfunding.- Airportscanactasimpartialmatchmakers,encouragingSAFpartnerships,drivingpublicawarenessandpromotingSAFupliftthroughincentives(e.g.directsubsidiesormodulatedlandingfees).- AirlinesneedrobustsupplierpartnershipstoaccesscompetitiveSAF.Inreturn,theyshouldcommittolong-termofftakeagreementsandpotentialco-ivestmentinproductionfacilities.- Originalequipmentmanufacturers(OEMs)mustensurecompatibilityoffutureengines,fuelsystemsandaircraftwith100%SAF.Furthermore,theyshouldsupporttechnologydevelopmentthroughextendedpartnerships.- CorporatecustomerscantaketheleadincoveringthegreenpremiumcostforSAF,whileatthesametimeprovidingtechnicalknowledge.- Thefinancesectormustincreasegreeninvestments,participateinfundingforSAFandcollaboratewiththeindustrytodevelopandderiskrobustbusinesscases.- GovernmentsareincreasinglyrecognizingtheimportanceofSAFandshouldpasslegislationtosupportthemarketbuild-up.ThesuccessofSAFscalinghingesonstrategicpartnerships,targetedtechnologydeploymentandsupportiveregulationsandfinancingmechanisms.IntroductionGlobalcollaboration,investmentandsupportivepoliciesareneededtobridgetheprojecteddemand-supplygapin2030andbeyond.Challengesinproductionandtechnologyadoptionremain.Inaddition,regionalfactors-suchasavailabletechnologies,favourableproductionconditionsandpolicylandscapes-significantlyinfluenceSAFdeploymentstrategies.ImportanceofSAFinaviationdecarbonizationTheaviationsectorisahard-to-abatesectoramideffortstoreachanet-zeroworldin2050,currentlycausing2-3%ofglobalCO2emissions.5Thekeydecarbonizationchallengesarisefromthehighenergydensitiesrequiredforaircraftandthelackofzero-emissionpropulsioncommerciallyviabletoday,asfoundinothersectorssuchasroadtransport.Whilesolutionssuchasimprovedoperationalefficiency,hydrogenandelectricaviationwillhelptheindustrydecarbonize,itistheconsensusthattheseactivitieswill,forthenextdecade,beinsufficienttoadvancethenet-zerotransition.Presently,thecriticalsolutiontodeployissustainableaviationfuel(SAF),whichisestimatedtoaccountformostenvironmentalimpactreductionuntil2050.Themainreasonsforthisarethepossibilityforrapidscaling(ifcurrentbarriersareovercome),seamlessintegrationintoexistingfuelinfrastructureandadditionalbenefits,suchaslowersulphurdioxide(SO2),nitrogendioxide(NO2)andparticulateemissionsreducingairpollution.6AlthoughitisestimatedthatSAFwillmprise65%oftheenergymixforaviationin2050,accordingtotheInternationalAirTransportAssociation(IATA),7currentproductionremainslowdespiteanincreasedwaveofannouncementsandcommitmentstorampupproductionglobally.DuringtherecentthirdInternationalCivilAviationOrganization(ICAO)ConferenceonAviationandAlternativeFuels(CAAF3),theindustryagreedtostriveforaneffectiveCO2emissionreductionof5%by2030,8whilethesignatoriesoftheCleanSkiesforTomorrow2030ambitionstatementaspiretoa10%SAFshareoffuelsupplybythesameyear.9Realizingbothofthesemilestoneswillrequiremorerapiddeploymentofproductioncapacities.Collaborationamongallstakeholdergroupsintheaviationesystem(seeFigure1)willbeessentialtoenablethistransformation.FIGURE1:SimplifiedoverviewoftheaviationandenergyindustryecosystemSAFandenergyproducersAirlinesOEMsSource:KearneyandAirportsofTomorrowProjectedSAFdemand-supplygapin2030Achieving10%SAFinglobalfuelsuppliesby2030iscrucialtokickstartaviationdecarbonizationandprovethattherapidscalingrequiredinthefollowingdecadesispossible.Consideringrecentaviationfuelconsumptionfactors,10andestimatedregionalgrowthfactors,11globalfueldemandin2030isestimatedat400-500metrictonnes(Mt)annually.Atotalof40-50MtofSAFwouldthusbeneededtoreachtheCleanSkiesforTomorrowambition.However,lookingatcurrentlyannouncedprojectsuntil2030,only30-40%ofthisdemandwouldbecovered(seeFigure2).12Thisismostlyduetotechnologyrisk,lackoffundingandmarketuncertaintyleadingtoahesitancyamongfuelproducerstoinvestinnewproductionsitesandinfrastructure.AnothernotableissueistheopacityofSAFprices(bothbidandoffer),whichisanaturalconsequenceofthestilllowvolumesofexchangedquantities.Pricesareoftenprivatelynegotiatedandnottransparenttothewidermarket.ThislackoftransparencyandliquidityposesadditionalfrictiontofastSAFdeploymentacrosstheworld.ThecreationofaglobalSAFmarketplacewouldgoalongwayinresolvingthesetransparencyandliquidityissues,facilitatingtradingandhelpingtoclosethestill-too-widespreadbetweenbidandofferprices.FIGURE 2. Only30-40%oftheprojected10%SAFdemandin2030iscoveredbycurrentprojectannouncements,withthemajoritycomingfromHEFA-basedproductionCurrentlyannouncedproductioncapacitiesfall25-35Mt/year(-60-70%)shortOfdeliveringon10%globalSAFsharein2030,.HEFA.G-FTAtJ.Pt1.Gap.Target20301. Consideredprojectstages:planning,investmentdecision,constructionandoperation.Note:HEFA=hydro-processedestersandfattyacids;G-FT=biomassgasificationFischer-Tropsch;AtJ=alcohol-to-jet;Pt1.=power-to-liquid.Source:KearneyandAirportsofTomorrowAvailabletechnologiesandtheirkeychallengesSAFisgenerallyproducedfrombiogenicornon-biogenicsourcesandhasthepotentialtoreduceCO2emissionscomparedtofossiljetfuelbyupto99%onalife-cyclebasis,dependingontheproductionroute.13Whenblendedwithconventionalfuel(JetA1),itschemicalandphysicalpropertiesarecomparableandcertifiedascompatiblewithconventionaJetA1fuel.Oneofthemaindifferencesbetweenthe“neat-SAF”andkerosene(JetA1)istheabsenceofaromatics,leadingtoissueswithsealingO-ringsandwithlubricationinaircraftengines.Suchanissueissolvedandmonitoredbyusingblendsbetween"neat-SAFnandconventionalfueltoobtainaSAFthatcomplieswiththeexpectedfuelspecifications.AsofJuly2023,theAmericanSocietyofTestingandMaterials(ASTM)hasapprovedseveralpathways,14whicharealsotheonesrecognizedbyICAO.TheASTMadditionallyspecifiestherespectivemaximumSAFblendratioswithconventionaljetfuel,withthemaximumapprovedSAFratiocurrentlyat50%,whichensuressafeoperationsofcurrentaircraftandenginesystems.ThisreportfocusesonthefourmostpromisingASTM-approvedpathwaystobedeployedatscaleinthecomingdecades(seeFigure3):hydroprocessedestersandfattyacids(HEFA),biomassgasification(G-FT),alcohol-to-jet(AtJ)andpower-to-liquid(Pt1.).FIGURE 3. IKeySAFproductionpathwaysrelyonsimilartechnologybuildingblocksFoursynthesisroutesarecommonlyregardedasthemostpromisingfromafeedstockandcostpointofview-85-94%emissionreductionsPower-to-liquid(Pt1.)Biomassgasification(G-FT),Alcohol-to-jet(AtJ)Hydro-processedestersandfattyacids(HEFA)Source:KearneyandAirportsofTomorrow1. Hydro-processedestersandfattyacids(HEFA)HEFAiscurrentlythemostcommonSAFpathwaygloballyanduseswasteandresidueoilfeedstocks,suchasusedcookingoilorpurpose-grownoil-yieldingplants.Toimprovetheproductionyield,hydrogenisalsofedintotheprocess.However,significantcostreductionsinthecomingyearsareunlikelyasthetechnologyismatureandtheincreaseddemandhasrecentlyresultedinrisingfeedstockcost.Inaddition,sustainabilitychallengesaroundpurpose-grownoil-yieldingplantslimitedthescalingpotentialofHEFAtowards2050.2. Biomassgasification(G-FT)Thegasificationofbiomassproducesamixtureofhydrogenandcarbonmonoxide(e.g.syngas),whichisusedtoproduceSAFinaFischer-Tropschreactor.Basedonthewidearrayofusablefeedstocks,twosubtypesaregenerallydistinguished:biomass-to-liquid(Bt1.)andwaste-to-liquid(Wt1.).Therequiredtechnologiesareunderstood,andcostimprovementsthroughscalingmaybepossible.Onekeycostdriveristhechoice,collectionandenergycontentofthefeedstock,oftenrequiringsmallerdecentralizedproduction.PreprocessingofbiomassclosetothesourcecanenablelargercentralizedSAFproductionsites.3. Alcohol-to-jet(AtJ)TheAtJpathwaycanprocessanyfeedstockthatcanbeprocessedtoalhols(forinstance,ethanolormethanol)andnvertsthemintoSAFwithahighspecificyield.BioethanolisalreadyawidelyproducedproducttodayandcouldberedirectedtoscaleSAFproductionquicklyuntil2030.Furthermore,localprocessingofbiomassfeedstocksintoalcoholsallowslarger-scalecentralizedproduction,enablingadditionalcostsavings.Allrequiredtechnologiesarewellunderstdandhavebeenindividuallydeployedwithinindustrialsites.Theextenttowhichcostreductionsarepossibleisunclear.4. Power-to-liquid(Pt1.)Hydrogen(H2)andCO2fromengineeredratherthanbiologicalprocessesareusedtoproducePt1.SAF,makingittheonlypathwaythatisnotlimitedbybiomassfeedstkavailabilityinthelongterm.H2usedinthiswaycanbeproducedviaelectrolysis(e.g.greenH2)orfromfossilsources,iftheemittedCO2iscapturedandpermanentlystored(e.g.blueH2).CO2canoriginateeitherfromappropriatepointsources(e.g.biomassenergy)ordirectaircapture(DAC).Akeychallengethatdrivesmostofthecostistheaffordabilityandaccessibilityofvastamountsof(renewable,inthecaseofgreenhydrogen)energy.Affordabilityisstronglydependentonlocalconditionsandpolicies,makingthestrategicpositioningofthesefacilitiescrucial.WithbothelectrolysisandDACbeingemergingtechnologies,significantcapitalexpenditure(CapEx)savingsarelikelyinthenextdecades,butPt1.remainsthemostexpensivepathwaytoday.FavourableregionsforSAFproductionSAFisaliquidfuel,likeconventionalfuels,andcanbetransportedthroughexistingglobaltransportnetworks.Asaresult,productionfacilitiescanbebuiltinregionswithidealconditions,enablingthecheapestandmostefficientproductiontofulfiltheemergingglobaldemand.SeveralfactorsinfluencehowfavourablealocationistoproduceSAFfromtechnicalandeconomicstandpoints(e.g.notconsideringanypoliciesorregulations).Themostimportantaspectistheavailabi

    注意事项

    本文(世界经济论坛-扩大可持续航空燃料供应:克服欧洲、美国和中东的障碍(英)-2024.3.docx)为本站会员(夺命阿水)主动上传,课桌文档仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知课桌文档(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-1

    经营许可证:宁B2-20210002

    宁公网安备 64010402000986号

    课桌文档
    收起
    展开