欢迎来到课桌文档! | 帮助中心 课桌文档-建筑工程资料库
课桌文档
全部分类
  • 党建之窗>
  • 感悟体会>
  • 百家争鸣>
  • 教育整顿>
  • 文笔提升>
  • 热门分类>
  • 计划总结>
  • 致辞演讲>
  • 在线阅读>
  • ImageVerifierCode 换一换
    首页 课桌文档 > 资源分类 > DOCX文档下载  

    第17章 勾股定理典型题解题策略讲解及变式训练.docx

    • 资源ID:1391460       资源大小:156.29KB        全文页数:10页
    • 资源格式: DOCX        下载积分:5金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要5金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    第17章 勾股定理典型题解题策略讲解及变式训练.docx

    第17章勾股定理典型题解题策略讲解及变式训练第1题如图6-1所示在AABC中,ABC=150,AB=>2,BC=2,以AB为直角边向外作等腰直角三角形BAD、以BC为斜边向夕M乍等腰直角三角形BEC,连接DE,求线段DE的长.解题策略因为ABAD是等腰直角三角形,所以易知BD=BC=2,NDBC=60。.进而可得ABCD是等边三角形.又因为BEC是等腰直角三角形,所以DE垂直平分BC然后分别求出OE和OD即可.解如图6-2所示,连接CD,设DE交BC于点O.VAB=AD=>2,BAD=90°,BD=2,ZABD=45o.BD=BC=2,ZDBC=ZDBA+ZABC=60o.ZXBCD是等边三角形.*.BD=CD=2.、VBE=CE,DE±BC,OB=OC.(BDE=-ABDC=30"BED="乙BEC=45°.22,:ZOBE=ZOEB=45o,BC=2,.OE=BO=BC=I.在RtBOD中.OD=FD2-OB2=22-I2=3,:.DE=OD+OE=yf3+l.解后反思本题考查等腰直角三角形、等边三角形的性质和判定、D£图62勾股定理以及中垂线的判定.本题中ABED的其中两个内角分别为30。和45。,,通过作高即可得到两个特殊的直角三角形变式1如图6-3所示,已知BC=病,48=4=45°的长.C/aB图6-3,所以只要知道ABED的任意一边的长,其他两边的长就可以求出.,求AC的长.如图6-4所示,在AABC中,NB=6()o,AC=70,AB=30或BCA图67变式2在ZkABC中.已知AB=15,AC=13,BC边上的高AD=12,求BC的长.变式3如图6-5所示,在"BC中.已知点D是BC的中点,AB=43j4C=2AD=3,求BC的长及ZkABC的面积.第2题如图6-6所示在AACB中,AD平分NCAB,CD=15,BD=25,求AC的长.解题策略看到题目中的“AD平分NCABQC_1.AC',马上想到角平分线的性质,故过点D作DElAB于点E,得DE=CD,进而易知AE=AC在RtBED中利用勾股定理求出BE.最后在RtACB中,利用勾股定理建立关于AC的方程,求出AC即可.解如图6-7所示过点D作DE±AB于点E,设AC=X.:AD平分NCAB,DC_1.AC,DEJ_AB,:DE=CD=15.:在RtACD和RtAED中,AC=>JAD2-CD2tAE=yAD2-DE2.*.AE=AC=X.在RtBED中.BE=yBD2-DE2=252-152=20,.AB=AE+EB=X+20,BC=40.在RtACB中,VAC2+BC2=AB2,X2+402=(%+20)2.x=30.:.AC=30.解后反思本题考直角平分线的性质、勾股定理以及利用勾股定理建立方程模型求未知数.当直角三角形中的一条边a已知,而另两边b和C未知,但存在某种相关关系时,一般可设b=X,然后用含X的代数式表示c,最后利用勾股定理建立关于X的方程,解得X的值即可求出b和c变式1如图6-8所示在RtACB中,已知Z-ACB=90。,CD14B于点D,AB=13,CD=6,求AC+BC的长.变式2如图6-9所示,已知AD1ABtBE1AB1AB=20,AD=8,BE=12,点C为AB上一点.且DC=CE,求AC的长.变式3如图6-10所示,在RtACB中,NC=90。,点D是BC上的一点.BD=9,AD=10,AB=17*BC的长如图6-11所示,在平面直角坐标系中,矩形OABC的顶点A.C的坐标分别为(4,0),(0,3)将AOCA沿线段CA翻折得到ADCA.且DA交CB于点E.求证:EC=EA.求点E的坐标.解题策略(D由矩形OABC和翻折可得。川8C,NOAC=NCAe.通过“倒角”易知ACE=KC4瓦故CE=AE.(2)要求点E的坐标.只需求CE的长即可.由知CE=AE,设CE=x,则AE=x.BE=4-x.然后根据勾股定理建立关于X的方程,最后求出X的值即可.解(1):四边形OABC是矩形,OA=BC,AB=OC,OA/BC,.ZOAC=ZACe.,.OCA翻折得到ZkDCA,:ZOAC=ZCAe.:ZACE=ZCAe.CE=AE.(2)设CE的长为X,则AE=x,BE=4-x. 点C的坐标为(0,3),AB=OC=3.在RtABE中,BE2+AB2=AE2,(4-x)2+32=x2,25:X=.8 点E的坐标为(个,3).解后反思本题考酰形、翻折变换、勾股定理以及通过建立方程模型求线段的长.当题目中出现翻折操作时,一定要先标出或指明由翻折可以得到的结论:相等的角、相等的线段和对应点.这些结论对思考问题非常有益.翻折操作经常以直角三角形或矩形为背景进行,一般需要借助勾股定理建立方程模型求一些线段的长.变式I如图6-12所示,一张直角三角形ACB的纸片,两直角边AC=6,BC=8,现将直角边AC沿直线AD折叠,使它落在斜边AB上,且与AE重合,求CD的长.图6T?_.变式2如图6-13所示.在矩形ABCD中"8=6fBC=8,l先把它对折,折痕为EF,展开后再沿BG折叠.使点A落在EF上的点.必处,求第二次折痕BG的长.图6-13变式3如图6-14所示,折叠矩形的一边AD,使点D落在BC边上的点F处,已知AB=8,BC=Io,求EC的长.D三6-14某市政府计划在宽为28米的海堤公路的路边安装路灯.如图6-15所示,路灯的灯臂CD长为3米,且与灯柱CB成120。角.路灯采用圆锥形灯罩,灯罩的轴线AD与灯臂CD垂直.当灯罩的轴线AD通过公路路面的中轴线时,照明效果最理想.应设计多高的灯柱,才能取得最理想的照明效果(精确到OO1)?(下列健供参考:21.414,61.732,52.236.)解题策略因为.乙BCD=120。,乙WC=90。,,所以分别延长AD.BC交于点E,易知RtABE和R(CDE是两个含30。的直角三角形.然后利用含30。角的直角三角形的性质和勾股定理即可求出BC的高度.解:如图6-16所示,分别延长AD.BC交于点E.1.BCD=120°, 乙DCE=60°.又NCDE=90。, ZE=30o.CE=2CD=6(M).B=90。ZE=30°,48=28÷2=14(米),.AE=2AB=28(米).在RSABE中.BE=1E2-AB2=282-142=143(K).:BC=BE-CE=143-618.25(米).解后反思本题是一道考查勾股定理应用的实际问题,题目考杳的图形是一个含特殊内角(120吓口90。)的四边形.求解方法是借助特殊钝角120。的邻补角60。,,分别延长四边形的两边得到两个含30。角的直角三角形.当题目中出现特殊锐角(30。,45。和60。)时,经常需要作高或补全图形来构造含特殊角的直角三角形.当题目中出现特殊钝角(120。,135。和150。)时,经常需要借助其邻补角来构造特殊的直角三角形.变式1如图6-17所示,在四边形ABCD中,AB=AD=6,A=60。,DC=150°,已知四边形的周长为30,求四边形ABCD的面积.图6-17变式2如图6-18所示.在四边形ABCD中.AB1BC,AB=1,8C=2,CD=2,AD=3,求四边形ABCD的面积.变式3如图6-19所示,在四边形ABCD中,AB=2,CD=1,乙4=60。ZB=ZD=90。,求四边形ABCD的面积.图6-20图6-21第5题如图6-20所示,在ZkABC中.AB=AC=5,BC=6点D在BA的延长线上,且CD=CB,求AD的长.解题策略要求AD的长,需要构造出包含AD的直角三角形,因为CD=CB,所以借助等腰三角形三线合一的性质作高,过点C作CE±BD于点E,设AE=x.然后借助RtAEC和RtBEC的公共直角边CE,建立关于X的方程,求出X的值,即可得到AD的长.DD解如图6-21所示过点C作CElBD于点E,设AE=x.:BC=CD,BE=DE=5-x.在RtAEC和RtBEC中.CE2=>AC2-AE2=S2-x2,CE2=FC2-BE2=62-(5-x)2f:52-x2=62-(5-X)2.解得X=371Q.FE=DE=5x=5-=.AD=DE-AE=解后反思本题考查等腰三角形三线合一的性质,勾股定理以及根据两直角三角形的公共边,建立方程模型求线段的长.一般来说,要求一条线段的长,经常需要利用勾股定理来求,而在利用勾股定理前,首先找到包含所求线段的直角三角形,如果不存在,需要作高来构造包含所求线段的直角三角形,有时当直接求一条线段比较难操作(即使已经作高),可以采用间接法,先求与之相关的线段,然后再翻过来求所求线段.变式1如图622所示,在AAOB中,乙4。8=90°,AO=3,BO=6,AOB绕顶点0逆时针旋转到AQB处,此时线段AB与BO的交点E为Bo的中点,求线段.夕E的长.图6-22变式2如图6-23所示,在矩形ABCD中,已知AB=3,BC=4,点P是AD上一动点.且PE14C于点E,PF1BD于点F,求PE+变式3如图624所示,在ABC中,乙SB=120。,AB=4,AC=2,AD1BC.,点D是垂足,求AD的长第6题如图6-25所示,在AABC中.AB=AC点P是BC上的一点.求证:AC2=AP2+CP-BP.解题策略因为所证的等式中含有线段的平方项,所以需要构造包含AC和AP的直角三角形,故过点A作ADlBC于点D,可得AP2=AD2+PD2fAC2=AD2+CO?化简ac2_Ap2=i4D2+CD2-(AD2+PD2)6PrJ.A解如图6-26所示,过点A作AD_1.BC于点D/VAB=AC,/BD=CD.图6-25在RSADP和RtADC中.AP2=AD2+PD2tAC2=AD2+CD2.AC2-AP2=AD2+CD2-(AD2+PD2)=CD2-PD2=CD2-(CP-CD)2图6-26=-CP2+2CPCD=CP(-CP+2CD)=CP(BC-CP)=CPBR:.AC2=AP2+CP-BP.解后反思本题考查勾股定理、整式的化简和等腰三角形的三线合一性质.当所求问题是含线段平方项的若干条线段之间的数量关系时,首先通过作高构造出含平方项的线段的直角三角形.在直接构造直角三角形行不通时,可以尝试添加适当的辅助线将其转化为其他线段,然后用勾股定理将其替换并代入所求问题中,最后一步一步化简即可.变式1如图6-27所示,在R(ACB中“=90。,点D为AB的中点,点E.F分别在AC.BC上,且DE_1.DF.求证:AE2+BF2=EF2.变式2如图6-28所示,ACB和ECD都是等腰直角三角形,ACB=乙DCE=90。,点D为AB边上一点.求证:AD2+AE2=DE2.图6-28变式3如图6-29耐在ZiACB中,乙C=90。,AM=CM,MP1AB于点P.求证:BP2=AP2+BC2.图6-29第7题如图6-30所示,在平面直角坐标系中,RtOAB的直角顶点A在X轴的正半轴上,ZF=60AB=百,点C的坐标为90),点P为斜边OB上的一个动点,求PA+PC的最小值.解题策略求PA+PC的最小值是最短距离问题,故作点A关于OB的对称点D.连接CD交OB于点P.连接AP,则此时PA+PC的最小值为CD.过点D作DNl04于点N,根据乙B=60。,AB=G利用勾股定理求出AM和AD,DN和CN,最后根据勾股定理求出CD.解如图6-31所示,作点A关于OB的对称点D,雌CD交OB于点P,连接AP,过点D作DNl0力于点N,此时+PC的值最小.:DP=PA,PA+PC=PD+PC=CD.,在R£OAB中,NB=600,AB=yf3,.OB=2AB=23tOA=3.VSoab=×OA×AB=×OB×AM,AM=W2.AD=2×=3.VAMB=90°,48=60°,/.NBAM=30°.:NBAo=90。,二NoAM=60。.VDN±OA,NNDA=30°.AN=-AD=-,DN=.22,2点C的坐标为6,0),Cv=3-i-z=1.22在RtDNC中,DC=cjv2+DZV2=Ji2+(苧_亨,即PA+PC的最小值是亨解后反思本题本质上是一道最短路线问题,考查轴对称、勾股定理、含30。角的直角三角形性质以及作高构造直角三角形求线段的长.最短路线问题的特征是两定点分别到一条直线上的动点的距离之和,拓展的最短距离问题还有已知角(尤其平面直角坐标系内)的三角形周长最小问题和四边形周长最小问题.变式1如图6-32所示,在ZiACB中.NC=900,NB=300,BC=8,D为AB中点.P为BC上TJ点.连接AHDH求AP+DP的最小值.变式2如图6-33所示,两个村庄A,B在河CD的同侧,A,B两村到河的距离分别为AC=1,BD=3,CD=3.现要在河边CD上建造一水厂、向A.B两村送自来水.铺设水管的工程费用为每千米20OOO元,请在CD上选择水厂位置O,使铺设水管的费用最省,并求出铺设水管的总费用W.图6-33变式3请阅读下列材料:问题:如图6-34所示,点A,B在直线1的同侧,在直线1上找一点P,使得AP+BP的值最小.小明的思路:如图6-35所示,作点A关于直线1的对称点.4,连接4'氏则48与直线I的交点P即为所求.B图6-34A*请参考小明的思路,探究并解决下列问题:如图6-36所示.在图6-35的基础上.设与直线1的交点为C,过点B作BD11,垂足为点D.若CP=1.PD=2,AC=I,写出AP+BP的值:将中的条件'AC=r去掉,换成“BDF-AC;其他条件不变写出此时,AP+BP的值;(3)请结合图形,直接写出(2m-3)2+1+(8-2m)2-4的最小值.如图6-37所示,点P是等边三角形ABC内一点将AABP绕点B逆时针旋转60。得至JaCBM.PA=2,PB=23,PC=4,<ABC的边长解题策略由旋转的性质可知AABPgACBM.易得APBM是等边三角形,所以CM=PA=2,PM=PB=21由勾股定理的逆定理可知NCMP=90。,故NCMB=I50。.借助其令肝卜角,过点B作BNICM交CM的延长线于点N,易求MN和BN的长.最后在RtCNB中,即可求出BC的长.解,ABP绕点B逆时针旋转60。得到ACBM,ABPCBM.CM=PA=2,PB=BM.:ZPBM=60o,.PBM是等边三角形.PM=PB=23.22+(23)2=42,.乙CMP=90o.ZCMB=150°.如图6-38所示过点B作BN±CM交CM的延长线于点N.乙BMN=180o-CMB=30°,.BN=ABM=3.2由勾股定理可得MN=3,图6-38CN=MN+CM=5.在RtCNB中,BC=yCN2+BN2=Js2+(3)2=27.解后反思本题综合考查旋转的性质(旋转全等)、全等三角形的性质、等边三角形的判定和性质、勾股定理的逆定理、含30。角的直角三角形的性质以及借助特殊钝角的邻补角作垂线,构造含特殊角的直角三角形.当求一条线段的长时,一般把它看作某个含特殊角(钝角或锐角或直角)的三角形的一边,将所求问题转化为解三角形的问题.变式1如图6-39所示,在正方形ABCD中.点P是正方形ABCD内一点把ABP绕点B顺时针旋转90。狷ZkCBE,连接PE,PC.B知APB=135°,PA=2,PB=1,求Pe的长.变式2如图6-40所示,已知点E为等边三角形ABC内任意一点,AE=XtBE=ItCE=百,求乙4EC的度数图6-40变式3如图6-41所示.48C是等腰直角三角形,AB=AC,.D是斜边BC的中点.点E.F分别是AB.AC边上的点.且.DE1DF.

    注意事项

    本文(第17章 勾股定理典型题解题策略讲解及变式训练.docx)为本站会员(夺命阿水)主动上传,课桌文档仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知课桌文档(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-1

    经营许可证:宁B2-20210002

    宁公网安备 64010402000986号

    课桌文档
    收起
    展开