欢迎来到课桌文档! | 帮助中心 课桌文档-建筑工程资料库
课桌文档
全部分类
  • 党建之窗>
  • 感悟体会>
  • 百家争鸣>
  • 教育整顿>
  • 文笔提升>
  • 热门分类>
  • 计划总结>
  • 致辞演讲>
  • 在线阅读>
  • ImageVerifierCode 换一换
    首页 课桌文档 > 资源分类 > DOCX文档下载  

    2024年九省联考试卷分析及真题鉴赏及答案.docx

    • 资源ID:1397293       资源大小:261.99KB        全文页数:41页
    • 资源格式: DOCX        下载积分:5金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要5金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2024年九省联考试卷分析及真题鉴赏及答案.docx

    2024年九省联考数学试卷评价一、整体分析:2024年新疆和贵州省的考生即将首次参加“新高考”,因此这次联考(后文称“九省联考”)扩大到九省,分别是黑龙江、吉林、安徽、江西、甘肃、河南、新疆、广西和贵州.随着备受关注的九省联考数学落下帷幕,我们发现数学试题发生巨大变化,题型、题量、分值、难易度等相比往年均有调整.其中单项选择题数量不变,还是8个小题,多项选择题、填空题和解答题各减少1个小题,多项选择题和填空题分别由4个小题减少到3个小题,解答题由6个小题减少到5个小题,试题总数从22个变成了19个,减少了13.6%.相应的分值也发生了变化:多选题(18分),填空题(15分),解答题(77分).考生的作答时间随之变得更加充分.这种变化值得我们关注!九省联考试题类型分布表题型题号分值备注单选1840分每题5分多选91118分每题6分填空121415分每题7分大题1513分导数1615分概率统计1715分立体几何1817分解析几何1917分新定义新情境考题的顺序安排也打破常规,有所变化.2024年九省联考数学试卷结构特点是灵活、科学地确定试题的内容、顺序和难度.与以往试题相比,各个题目的考查内容、排列顺序进行了大幅度的调整,以往压轴的函数与导数试题安排在解答题的第1题,即第15题位置,难度大幅度降低,为容易题,估计绝大多数考生能得满分;概率与统计试题(第16题)也降低了难度,为常规题,中等偏易,计算量也不大;19题为压轴题,安排了新情境试题(背景为密码学理论中的盖莫尔加密体制,后文详细说明).这些变化对于打破学生机械应试的套路模式,对促使学生全面掌握主干知识、提升基本能力具有积极的导向作用.1 .基础题第1,2,3,4,5,9,10,12,13,15,16,17题,共90分,考查的是课程标准所要求必会知识,试题出的都比较简洁,读题不困难,计算也不困难.2 .中档题6, 7,11题,共16分,读题不困难,有的题需要多思考,在进行解决问题,没有什么亮点题,中规中矩.3 .困难题及极难题第8,14,18,19题为压轴题,共44分,分别涉及解析几何(双曲线、抛物线)、条件最值问题和新定义新情境问题.总之,2024年九省联考数学试卷通过改变题目的设计思路与风格,力图有效地遏制猜题押题、题海战术的蔓延.基础题只要掌握基础知识、基本原理,就能解决,无需刷题.创新题新颖、灵活、不落俗套,脱离一般的解题套路.试卷打破了试题题型、命题方式、试卷结构的固有模式,增强试题的灵活性,采取多样的形式、多角度的提问,考查学生的数学能力,而不仅是学生刷题和训练的技巧,引导基础教育扎实实施素质教育.二、试卷变化对比:1.考点和题型变化对比2020新高考I卷2021新高考I卷2022新高考I卷2023新高考I卷2024届九省联考题号知识点题号知识点题号知识点题号知识点题号知识点1集合并集计算1交集的概念及运算1交集运算1集合的四则运算、共筑复数的概念1中位数的计算2复数除法2复数代数形式的乘法运算;共挽复数的概念及计算2共物复数、复数的计算2复数的四则运算2椭圆的离心率3排列组合3圆锥中截面的有关计算3三点共线的向量问题3向量垂直的充要条件3等差数列的性质、等差数列前项和公式4数学文化,球计算4求Sinx型三角函数的单调性4棱台体积公式4复合函数的单调性4空间平行于垂直的判断5积事件的概率公式5基本不等式求积的最大值;椭圆定义及辨析5古典概型5椭圆的离心率5有限制条件的排列组合计算6指数型函数模型6正、余弦齐次式的计算;二倍角的正弦公式;给值求值型问题6三角函数图象及其性质6直线和圆的位置关系6动点轨迹、点到直线距离公式7平面向量数量积7求过一点的切线方程;利用导数研究函数图象及性质7函数与导数,构造函数比较大小7充分条件与必要条件、等差数列7三角恒等变换,二倍角公式、弦化切8函数奇偶性与单调性解抽象函数不等式8独立事件的判断8几何体的外接球8三角恒等变换(两角和差,二倍角)8双曲线几何性质、双曲线离心率9曲线方程9众数、平均数、中位数、极差、9线线垂直、线面垂直9样本的数字特征(平均数、9三角函数辅助角公方差、标准差中位数、标准差、极差)式、三角函数图像及其性质10正弦型三角函数图形10逆用和、差角的余弦公式化简、求值;二倍角的余弦公式;数量积的坐标表示;坐标计算向量的模10函数与导数,零点、对称中心10在新定义情境下考察理解能力,对数的运算10复数的运算、共辗复数、复数模的运算性质11不等式、指数函数11切线长;直线与圆的位置关系求距离的最值11抛物线的定义、标准方程及其几何性质11抽象函数为载体,考察奇偶性,赋值法,极值的概念11抽象函数的奇偶性、单调性12新定义的理解和运用12求空间向量的数量积;立体几何中的轨迹问题12函数与导数、函数奇偶性、抽象函数12球的体积,四面体体积,圆柱体积公式12集合的交集运算、子集运算性质13抛物线焦点弦长13根据函数的单调性求参数值13二项式系数13分类加法原理13(双空题)圆锥及球的表面积、体积公式14等差数列的公共项14根据抛物线方程求焦点或准线;根据抛物线上的点求标准方程14圆和圆的位置关系、两圆的公切线14正四棱台的体积公式14新定义,条件最值问题15三角函15由导数求函数15导数的几15含参三角函数15(解导数的几数应用的最值(不含参)何意义的零点问题答题,13分)何意义、导数与函数的单调性、极值16直棱柱的结构特征16错位相减法求和:数与式中的归纳推理16椭圆的定义、弦长问题16双曲线离心率16(解答题,15分)古典概型概率的计算、离散型随机变量分布列及数学期望17三角函数组合条件17由递推数列研究数列的有关性质;利用定义求等差数列通项公式;求等差数列前n项和17由递推公式求通项公式、裂项求和、放缩问题17正弦定理、三角形面积公式17(解答题,15分)线面垂直的证明、二面角的计算18等比数列18写出简单离散型随机变量分布列;求离散型随机变量的均值18三角函数倍角公式、对称中心、三角函数最值18线线平行证明、二面角的计算18(解答题,17分)直线与抛物线位置关系、抛物线中定点问题及最值的解法19古典概型、列联表、独立性检验19正弦定理边角互化的应用;几何图形中的计算19立体几何点面距、二面角19导数与函数的单调性、利用导数证明不等式19(解答题,17分)新情境问题,离散对数,对数式与指数式互化20线面角的计算20锥体体积的有关计算:线面垂直证明线线垂直;面面垂直证线面垂直;由二面角大小求线段长度或距离20独立性检验、条件概率、数学建模20等差数列的通项公式、前项和公式21导数、不等式恒成立21求双曲线的轨迹方程;双曲线中的定值问题21双曲线标准方程及其几何性质、双斜率问题、弦长问题、三角形面积21以马尔科夫链为背景,考察全概率公式,概率乘法公式,数学期望的计算;递推数列;等比数列求和22椭圆定点、定值问题22利用导数求函数的单调区间(不含参);利用导数证明不等式;导数中的极值偏移问题22利用导数求参变量、利用导数研究函数的零点、同构问题22抛物线方程及其几何性质、直线与抛物线位置关系、抛物线中最值问题(周长不等式)的证明2.考点分布的变化2024九省联考数学试卷依据普通高中数学课程标准(2020年修订版)考点进行规划,没有考查映射、线性规划、几何概型、算法框图、定积分等内容,其他考点继承了以前高考的特点,重点考查主干知识、注重试题的基础性、综合性、应用性与创新性.3.情境及背景新颍创新探索情境设置,考查学习潜能.选取未见于(或部分见于)学生已有学习经历的新知识或新方法,为情境型材料,创设学习关联或拓展迁移试题情境,命制情境化试题.情境可能是考生未见过的,提出的问题是新颖的,解决问题必备知识是高考所要求掌握的,思想方法是高中数学重要而典型的.情境题难在情景背后的数学化,要求学生多角度理解、开放地思考问题,并创造性地运用所学知识去解决新问题,如第14,16,18,19等题.第14题讨论的一类最大最小问题在实际应用中具有普遍性,题目中的条件02或+2l来自于实际问题.如果单纯从数学的角度,在上面两个条件中任取其一,己经可以构成一个完整的数学问题.这个题目虽然没有直接指明应用的背景,但实际上体现了试题的应用性.第16题考查概率,情境设置较为新颖,相比常见概率试题有所创新,打破传统数学题目具有接受性、封闭性和确定性等特征,更加倡导“问题解决”这一数学教学模式,凸显了核心素养下对数学知识的综合考查.第18,19题更加注重综合性、应用性、创新性,这两个题分值最高,试题容量明显增大,对学科核心素养的考查也更深入.两个题有各自特点,不适用以传统“压轴题”的想法看待其中某一个题.第18题以抛物线为基本情境,第(1)问的考查内容属于解析几何中的通性通法,第(2)问如果仍使用解析几何的常规方法,将导致非常复杂的计算,可行的解法需要将所求三角形的面积转换为一个适合计算的四边形面积,然后由基本不等式得到解答.这个解法的关键步骤虽然属于初中数学学过的平面几何知识内容,但对学科核心素养之一的直观想象有很高的要求,能综合运用不同的几何方法解决问题也是学科核心素养水平的重要体现.第19题的试题情境是在密码学理论中有重要地位的盖莫尔(ElGamaI)加密体制.在大数据时代,数据安全问题越来越受到重视.盖莫尔公钥密码体制是在网络上进行保密通信和数字签名的有效安全算法,应用十分广泛,其数学理论基础就是题目中讨论的离散对数.在盖莫尔公钥密码体制的情境下,题目中的X是明文,是公钥,离散对数是密钥,(y,%)是对X加密得到的密文,由(乂,为)得到X是解密.对于充分大的素数和适当的求解离散对数是困难的,但其逆运算(离散指数运算)可以用平方乘算法快速有效地进行计算,这是盖莫尔公钥密码体制安全有效性的依据.第19题考查的数学内容是指数、对数的运算以及指数与对数的互逆运算等常规知识点在离散指数及离散对数中的迁移,其中第(2)问是证明离散对数形式上满足普通对数的运算规则,第(3)问本质上是进行离散指数运算,然而更重要的是对逻辑推理等学科核心素养的考查.离散对数与普通对数的本质区别在于同余运算.同余的概念是现代数学中非常重要的概念,对同余问题的研究也是中国优秀传统数学文化的重要部分(如著名的中国剩余定理).题目中没有明确引入同余的概念,仅仅使用了余数概念,这是在小学数学中学过的概念.题目中附加了条件1,%/.8两两不同,在这个限制条件下不需要一般形式的费马小定理,简化了问题叙述,降低了题目难度,通过第(1)问又进一步对®=l给出启发性提示.这样的处理符合多数考生的实际知识水平和认知能力.第(3)问中的随机常数左完全来自于实际应用,对每一条明文X使用随机选取的是安全性的必要保证.三、重点试题、亮点题、创新题点评:第3题,常规题,除了可以应用方程思想列出基本量(首项、公差)的方程组求解,也可以灵活运用等差数列的性质求解:(快速解法)由已知2%=6,.6=3,又=17,.*.Sg=I'";“6)=8(/+%)=160,故选C.第5题:解法一(直接法):甲一定在乙丙中间,否则甲就要在两端,C;A;A;A;=16.解法二(间接法):先仅考虑乙丙之间恰好有两人的站法,再减去不符合题意的站法(甲在两端):用&&&=16,共16种,故选B.第7题:解法一:由已知,TctandcO,T=-4-l-tan9ITaneKPtan=-2(tan+l)2,(2tan+l)(tan+2)=0,tan=,或tan6=-2(舍)2cos+sin202cosG(sin0+cos)2cos故选A.2tan6>+-1(解法二:(拼凑角)飞=Ian26+,=-ITan2(I2)9tan2+j=l,.tan(6+?)=;或一g又.e+.由。:,.1+sin26(Sine+cos。)?1Cll.;=-;T=-tan。+-=一2cos+sin22cos(sin+cos)222tanfAtan-11I4J41131I121fn1122I241+tan+-tan1+-1I4)43故选A.第8题,解法多,下面列出几种较简单的解法:可知忸周=IEAl,|£耳=2IGAl=2怩4VBF2',212J411tan2yl.(n乃Y4tanI÷1(C4、111-tan0+-1.l4)4j2-2=2a,可得优吊=2%从而l+sin26(Sine+cos。)*sin÷cos1zz.l(11:=1._=-(tan+l)=-一一+1,F2AFlB=4a.法1:由鸟耳=EZ+玛8,平方可得¢2=7/,故C的离心率为e=".法2:.gAEQ=4",cos佰AEs=;,NAKB=60。,内臼=2忻4|,.EAJ_A8,AB=23,:t+F2I=OF2,c则max抄一,c-b,l-cmax-,=7,故C的离心率为e=7.法3:F2AF2B=4a2f:.cos(F2A,F2B=NAKB=60。,故NEBK=I20。.由cosZF1BR=忸&:二修段可得,2=7/,故C的离心率为e=".2BFlBF2第14题,背景是切比雪夫最佳逼近线问题,较简单的解法:解法一:若6247,、1/1.i1"C1-(b-a)+=-+-(b-2a)-2I7244174113当且仅当占一。=<?-6=1-。且6=次,即=-,b=-,c=一时取等号.424若+8l,则ma×b-atc-b,-cmax151(j)+48="2-(o+到(234b=-n-pa=-m-n-p当且仅当人一=(?一6=1。且+/?=1,即。=,b=w,c=w时取等号.解法二:令b-a=m,cb=n,l-c=p,m,",p>02>若b2=>l-p2-2加一2-2p=>2n+"+p令机=maxb,c-b,l-c)=max,几p2M>2mMn=>42m+n+pi=>M.Mp若+bl,BP2-w-2n-2p1=>w+2w+2p1Mm令M=max)小,p,.*2M2n=>5fm+2n+2p,:.M-2M2p当Tn=2=2p时,例如c=±b=3.4=2时可取“=”,;.(原式)=1.555'Jmm5解法三:记x=C-仇f=1一。,则x+y+z+f=l,x,y,zj(O,l),且yx,或2x÷y1,maxb-,c-b,l-c)=maxy,zj=A,Ay,Az,At.当yx时,Ay>x,2Ax+y,4x+y+z+t=l,A-;4当2x+yl时,2x+yx+y+z+/,即z+Z2A,2A+A+A+Ax+y+z+f=l,Ag,2x+y=1»21234当<x=z+r,SPx=-,y=z=y=-,也就是4=,力=m,。=My=z=ti对,A=".综上,Anin=即maxb-。,。一41一。的最小值为1.解法四:记11106-0"-九1-(?=4,则Ab->0,Ac一力>0,Al-c>O.1.又b2a,或。+bl,.a<-t或l-b.2当2j,即2b<时,a-iAb-ab-=-.A-,A-.23222233(2)-<-b,tJ0<><2时,a-bAb-ab-(i-b)=2b-i,23A2b-A+A2(c-b+-c)+(2b-)=1At-b=a214当1A1即时,可取得等号.2b-=c-b=l-cf555综上,Anin=;,即max也一,c-8一c的最小值为g.解法五:记maxb。,c-b,l-c=A,则A>0,Ah-a,Ac-hiA-c,xA+y+yAx(b-a)+y(c-b)+y(-c),BP(x+2y)A(x-y)b-xa+yt其中x>0,y>0.若b2,则匕一20,令x=2(x-y),则x=2y>0,4yAyb-2ya+yt即A-(b-2a+)-44若+bl,贝J-4-8-l,令X=-(X-y),则y=2x,5x'A-xb-xa+2x,即Ag(-b-+2)g(-1+2)=1,1b-a=-y.A,当<1234c6=即q=_,b=_,C=一时,可取“=”5555IV综上,Anin=;,即maxb-,c-友l-c的最小值为g.解法六:记1110K/一。,。一1,1-(?=24.贝JAb-,Ac-b,Al-c,3AS-)+(c-b)+(l-c),l-3A.2A(c-b)+(l-c)=-b,b-2A.若b2a,则由A6-得Ab-44l-3A,A1-3AA-,4若4+bl,MJ1-2AZ>1-1-(1-3A)=3A,l-243A,Ag,234I且当=,b=g,c=1时,A=j.综上,Anin=",即max力一,c”,l-c的最小值为g.当b为,由不等式性质得gb-Vm,再根据定义得出最小值.b2M«c-bM=>4m1,tn4-cM当+8l,由不等式性质得A-02h-1,再根据定义得出最小值.解法七:(1)若b勿,则2,g6-4M,22113当且仅当a=:/=;,C=M取等号4242b-lM当4+Z>l,b-a=2b-(c+b)2b-,2c-2b2M=>5MfM-2-2cM2341当且仅当。=Ib=g,c=y取等号.综上,历的最小值为第18题,考查抛物线几何性质、直线与抛物线位置关系,背景是圆锥曲线的极点极线理论,对圆锥曲线来说,焦点与相应的准线是极点与极线,更一般地结论如下:【定理】如图,设点尸关于圆锥曲线的极线为/,过点尸任作一割线交于A,B,交/于。,则鲁二强;反之,若有成立,则点尸,Q调和分割线段A8,或称点尸与。关于调和共枕,IDD(gJ或称点P(或点Q)关于圆锥曲线的调和共轨点为点。(或点P).点。关于圆锥曲线的调和共筑点是一条直线,这条直线就是点。的极线.面是本题几种典型的解法:率)=>2x1-2=y12,2x2-2=y2,kJfJf_2从而Am-XT2一於g-y+%2又kAB*DE=7,故y%=-42从而MN:J=-(x-x)+y,即(y+%),=2工2¥+父+乂7).y+%即(y+%)y=2x-2-4=2x-6,故MN过(3,0).nDGM+AGN=SaaDG=S八GPQ=SDPM+Saqn思路二:取AO中点Q,则PM8G.故SAGPM=SAPDM故S/MN=S&GPM+SAGPN+SAPMN=SNDM+S户AN+SAPMN=Sa=AMDN=-×-AB×-DE=-AB×DE.2228思路三:(利用割补)S八GMN=SAXJBNS&GMBS&BMN=GBEACBS刖=2SGGBE_2SGXGB_5(SAABE-SAANES&bNe)=QANE+万BNE=2X2S4ADE+qXqSbDE=W(S.£+S.DE)=WSADBE=-AB×DE.8第19题的试题情境是在密码学理论中有重要地位的盖莫尔(ElGamal)加密体制.【分析】对于整数。和正整数P,如果存在mwZ,rO,l,-,p-l),使得=i+r,则称为。除以的余数.根据带余除法,这样的,",是必定存在的.我们以下记。三伏modp)表示。与6除以P的余数相等.mv三mv(modp)=IOg(P)等价于a"®=?Jw0,l,p-l).另外我们宜接利用如下的费马小定理:当aeX时,aT三l(modp).【解析】(1)P=Il,。=2时,2°=1024=93xll+l,ap=2,0-®=1.(2)证法一:记IOg(P)/=叫,IOg(P)/=吗,IOg(P)a(bgc)=g,只需记砥=叫也即a""e=6,。吗e=c,am><s>=h0c=hc-kp=>am,=kip+b,am'=k2p+c,amy®=b0c=hc-kpa,"i+m2=klk2p+ckp+bk2p+be,am-=kjp+bc-kp.(2)由一,得。呵+吗=klk2p+ckip+hk2p-kyp+kp=pK即a""(a""+m-g-l)=pK由知,“不是尸的倍数,故"忙吗-叫-I=PM,am'+m=pM+即a网+f-叫®=,易知町+吗-加3eo,2p-4,而1,a,,白"®两两不同,则与1,a,力.®,。丁2.®之一相同,设aPT.®=a$,®=£,(假设lsp-2)即anP+,=apl-as=(z,-2)p=af(ap-1,1)=>aps=1=n2p+t、Z而lp-l-sp-2时,apis1.因此S=0,即屋f®=故必有网+网-吗=PT或0,则叫叫=nh得证.(2)证法二:记=IOg(P)aSc),nl=log(p)rth,i2=Iog(P)tlC,则有m,使得arh=Pml+htan2=pm2+c,.a叫+电=p2mitn2+pnxc+n2b)+bc三hc(modP),又根据的定义,an三Z>0c(modP)三bc(modp).*.an三an'+n2(modP).VI,a,02q,,/2.®两两不同,并且根据费马小定理,当&,rNF,*(p->+r/(modp),而,外,%eX,I只可能有两种情况出现:二|+2或=(1+&)+一1,两种情况下都有=%2,因此log(p)&Sc)=log(plblog(p)ac.(3)证法一:*.*n=log(”b,/.an三hmodp).另一方面,为Ny;g.®三y2y2三(Xg环®)WG)"2)三(W*g三(/)收-2)三加三MmOdP).由于xx,,”=%Ryr"”)®.(3)证法二:n=Iog(P)M»an三bmodP)且为yp"2y9三y2W(P-2)®三MmodP),.xX,.x=y2yp-2.四、复习建议1 .立足课程标准,钻研中国高考评价体系普通高中数学课程标准(2020年修订版)是高考数学考查内容范围和考查要求层次的依据,数学测试卷的命题理念、考查的内容范围与课程标准完全吻合.试卷立足课程标准,考查的内容依据学业质量标准和课程内容,注重对学生数学学科核心素养的考查,很好处理数学学科核心素养与知识技能的关系,充分考虑对教学的积极引导作用.数学测试卷注重考查学生基础知识和基本技能的熟练掌握和灵活应用,强调知识的整体性和连贯性,引导教学要注重内容的基础性和方法的普适性,要避免盲目钻研套路训练和机械训练.试卷引导教学要立足课程标准,要求以课程目标和核心素养为指引,以数学的基础知识、基本技能为载体,在学生领悟数学思想、积累数学活动经验的过程中,引导学生学会思考与发现,进而培养学生数学学科核心素养.2 .用好教材,突出对课本基础知识的再挖掘高中数学教材是体现和落实课程标准基本理念和目标要求的科学范本,是高考数学命题的重要参考.数学测试卷部分试题以教材中的典型试题和素材为基础,进行了改造、重组和引申,考查考生对基础知识、基本方法的深刻理解和灵活应用,要深入研究教材,回归教材,用好教材,讲清讲透基本概念、原理的来龙去脉,避免过度依赖教辅、深陷死记硬背和题海训练;要立足教材中的概念、公式、定理等重要知识,构建知识之间的联系,提升学生理解的深刻性和应用的灵活性;教学中要强化通性通法,淡化特殊技巧,要引导学生善于从繁杂的问题中洞悉其本质,把握一般规律与方法,注重渗透数学思想,积累数学经验;立足教材中的典型试题,深挖内涵,注重一题多解、一题多变,注重拓展和归纳,开阔学生分析问题的思路,培养学生良好的数学思维品质,为培育学生的数学关键能力和发展学生的学科核心素养奠定坚实基础.3 .关注知识的生成过程,重视基础是关键数学测试卷通过命题创新,提高试题的灵活度,进一步丰富试卷的内容与形式,优化试卷结构,突出考查考生的理性思维和探究能力,切实改变机械刷题、套路训练的现象,强调学生的思维过程,积极引导教学回归育人本位.机械刷题、重复训练的应试做法己经不能适应高考改革的要求,无法匹配新高考对关键能力和学科素养的考查要求.数学测试卷打破了固化的定势思维和应试惯性,引导教学重视情境创设,关注知识的生成过程,引导学生通过观察、思考、探究,提高发现问题、提出问题、分析问题和解决问题的能力;引导教学关注思维的深刻性,通过问题引导、点拨启发和深化提升,促进学生学会思考、拓展思维,培养学生在学习中做到“举一反三总之,2024年适应性测试数学试卷是高考内容改革的风向标,发挥着育人功能和正向积极的导向作用.试卷践行中国高考评价体系提出的命题理念,严格依据高中课程标准,并按照课程标准提出的处理好考试时间和题量的关系,给学生充足的思考时间,适度增加试题的思维量等命题原则的要求,助推高考内容和高中育人方式改革.试卷充分发挥了检测和导向的作用,有效引导中学数学教学,助力拔尖创新人才选拔.2024年1月普通高等学校招生全国统一考试适应性测试(九省联考)数学试题注意事项:.答卷前,考生务必将自己的考生号、姓名、考点学校、考场号及座位号填写在答题卡上.4 .回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需要改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.5 .考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1 .样本数据16,24,14,10,20,30,12,14,40的中位数为()A.14B.16C.18D.202 .椭圆=+y2=l(a>l)的离心率为9则()A.苧B.2C.3D.23 .记等差数歹J%的前项和为S”,%+%=6Mn=17,则Sk,=()A.120B.140C.160D.1804 .设,夕是两个平面,是两条直线,则下列命题为真命题的是()A.若a_1./,则桃_1./B.若mua,lu,m"I,则0C.若£=/,/尸,则加/D.若mta,lJ,0,ml,则J力5 .甲、乙、丙等5人站成一排,且甲不在两端,乙和丙之间恰有2人,则不同排法共有()A.20种B.16种C.12种D.8种6 .已知Q为直线,:x+2y+l=0上的动点,点P满足QP=(1.-3),记尸的轨迹为E,则()A.E是一个半径为正的圆B.E是一条与/相交的直线C.E上的点到/的距离均为4D.E是两条平行直线7.已知e(U,11,tan2e=-43n(+:,则=()4)4J2cos2+sm21 33A.-B.C.1D.一4428 .设双曲线CJ多=13>0,b>0)的左、右焦点分别为耳,鸟,过坐标原点的直线与C交于AB两点,MM=2GAl,04-68=心2,则C的离心率为()B.2二、选择题:本题共3小题,每小题6分,共18分,在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得。分.9 .已知函数f(x)=sin(2x+7j+cos(2x+7j,则()A.函数不用为偶函数B.曲线y=(x)的对称轴为X=E,AeZc./()在区间停,3单调递增D./(x)的最小值为-210.已知复数z,w均不为0,则()A.z2=|zfC.z-w=z-w11 .已知函数/()的定义域为R,且卜0,若/(+y)+()f(y)=4个,则(A力小。B.d)=-2C.函数/1-g)是偶函数D.函数/(X+;)是减函数三、填空题:本题共3小题,每小题5分,共15分.12 .已知集合A=-2,0,2,4,8=Hk-若AnB=A,则加的最小值为.13 .已知轴截面为正三角形的圆锥MM'的高与球O的直径相等,则圆锥MM'的体积与球O的体积的比值是,圆锥MM'的表面积与球。的表面积的比值是.14 .以maxM表示数集M中最大的数.设OVa<8<cvl,已知或+bl,则max。一。,。一81一H的最小值为.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15 .已知函数f(x)=hur+f+分+2在点/)处的切线与直线2x+3y=0垂直.求。;(2)求/(x)的单调区间和极值.16 .盒中有标记数字1,2,3,4的小球各2个,随机一次取出3个小球.(1)求取出的3个小球上的数字两两不同的概率;(2)记取出的3个小球上的最小数字为X,求X的分布列及数学期望E(X).17 .如图,平行六面体ABs-A与G"中,底面ABCD是边长为2的正方形,。为AC与8。的交点,AAI=2,NGCB=NClCD,NGCo=45°.(I)证明:Col平面ABC。;(2)求二面角8-AA1-O的正弦值.18 .已知抛物线C:V=4x的焦点为尸,过尸的直线/交C于A8两点,过尸与/垂直的直线交C于RE两点,其中6,。在X轴上方,M,N分别为A民0E的中点.(1)证明:直线MN过定点;(2)设G为直线AE与直线8。的交点,求GMN面积的最小值.19 .离散对数在密码学中有重要的应用.设是素数,集合X=12,p-l,若,ueX,meN,记口为W除以P的余数,孙为“除以,的余数;设X,两两不同,若,®=Me(U,一2),则称是以为底b的离散对数,记为,=Iog(P)M.(1)若P=11,。=2,求小叫对町,叫e0J,-2,记町/叫为町+也除以,T的余数(当町+也能被,-1整除时,叫w2=0).证明:1Og(P)a(/?0c)=log(p)/31og(p1.c,其中友cX;已知=Iog(P)/.对X#e1,2,p-2,令M=/巴必=X.证明:X=%位y"F.®.参考答案:1. B【分析】由中位数定义即可得.【详解】将这些数据从小到大排列可得:10,12,14,14,16,20,24,30,40,则其中位数为16.故选:B.2. A【分析】由椭圆的离心率公式即可求解.【详解】由题意得二必W=解得=回,a23故选:A.3. C【分析】利用下标和性质先求出%+%的值,然后根据前项和公式结合下标和性质求解出SUt的值.【详解】因为的+%=26=6,所以%=3,所以见+生=3+17=20,所以Sm=(4+y6=8(%+an)=160,故选:C.4. C【分析】由线面平行性质判断真命题,举反例判定假命题即可.【详解】对于A,肛/可能平行,相交或异面,故A错误,对于B,明夕可能相交或平行,故B错误,对于D,%平行,不可能垂直,故D错误,由线面平行性质得C正确,故选:C5. B【分析】分类讨论:乙丙及中间2人占据首四位、乙丙及中间2人占据尾四位,然后根据分类加法计数原理求得结果.【详解】因为乙和丙之间恰有2人,所以乙丙及中间2人占据首四位或尾四位,当乙丙及中间2人占据首四位,此时还剩末位,故甲在乙丙中间,排乙丙有A;种方法,排甲有A;种方法,剩余两个位置两人全排列有A;种排法,所以有A;xA;xA;=8种方法;当乙丙及中间2人占据尾四位,此时还剩首位,故甲在乙丙中间,排乙丙有A;种方法,排甲有A;种方法,剩余两个位置两人全排列有A;种排法,所以有A;xA;xA;=8种方法;由分类加法计数原理可知,一共有8+8=16种排法,故选:B.6. C【分析】设P(,y),由8=(1,-3)可得Q点坐标,由Q在直线上,故可将点代入坐标,即可得产轨迹E,结合选项即可得出正确答案.【详解】设尸(Xy),由QP

    注意事项

    本文(2024年九省联考试卷分析及真题鉴赏及答案.docx)为本站会员(夺命阿水)主动上传,课桌文档仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知课桌文档(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-1

    经营许可证:宁B2-20210002

    宁公网安备 64010402000986号

    课桌文档
    收起
    展开