2024年全球甲烷追踪器(英)_市场营销策划_2024年市场报告-3月第4周_【2024研报】重点报.docx
ContentsBackground4Methaneemissionestimates5Upstreamanddownstreamoilandgas5Incompletecombustionofflares9Coalminemethane10Emissionsfromfuelcombustion(enduse)11Wasteandagriculture13Methaneabatementestimates14Marginalabatementcostcurvesforoilandgas14Well-headpricesusedinnetpresentvaluecalculation19Marginalabatementcostcurvesforcoalminemethane20Energypricesusedinnetpresentvaluecalculation24Projectionsofenergy-relatedmethaneemissionsandassessedtemperaturerises.26Glossary28Oilandgasabatementtechnologies28Coalminemethaneabatementtechnologies30Policyoptions33Policyexplorer34References38BackgroundTheIEA,sestimatesofmethaneemissionsareproducedwithintheframeworkoftheIEA,sGlObalEnerqVandCIimateModnl(GEC).Since1993,theInternationalEnergyAgency(IEA)hasprovidedmedium-tolong-termenergyprojectionsusingthislarge-scalesimulationmodeldesignedtoreplicatehowenergymarketsfunctionandgeneratedetailedsector-by-sectorandregion-by-regionprojectionsfortheWorldEnergyOutlook(WEO)scenarios.Updatedeveryyear,themodelconsistsofthreemainmodules:finalenergyconsumption(coveringresidential,services,agriculture,industry,transportandnon-energyuse);energytransformationincludingpowergenerationandheat,refineryandothertransformation(suchashydrogenproduction);andenergysupply(oil,naturalgasandcoal).Outputsfromthemodelincludeenergyflowsbyfuel,investmentneedsandcosts,greenhousegasemissionsandend-userprices.TheGECisaverydata-intensivemodelcoveringthewholeglobalenergysystem.Muchofthedataonenergysupply,transformationanddemand,aswellasenergypricesisobtainedfromtheIEA,sowndatabasesofenergyandeconomicstatistics(andthroughcollaborationwithotherinstitutions.Forexample,fortheNetZeroby2050:ARoadmapfortheGlobalEnergySectorpublication,resultsfromboththeWEOandEnerqyTeChnolOqVPerSDeCtiVeS(ETP)modelshavebeencombinedwiththosefromtheInternationalInstituteforAppliedSystemsAnalysis(IIASA)一inparticulartheGreenhouseGas-AirPollutionInteractionsandSynergies(GAINS)model-toevaluateairpollutantemissionsandresultanthealthimpacts.And,forthefirsttime,resultswerecombinedwiththeIIASA,sGlobalBiosphereManagementModel(G1.OBIOM)toprovidedataonlanduseandnetemissionsimpactsofbioenergydemand.TheGECalsodrawsdatafromawiderangeofexternalsourceswhichareindicatedintherelevantsectionsoftheGECdocumentation.ThecurrentversionofGECcoversenergydevelopmentsupto2050in29regions.DependingonthespecificmoduleoftheWEM,individualcountriesarealsomodelled:16indemand;113inoilandnaturalgassupply;and32incoalsupply(seeAnnexAoftheGECdocumentation).MethaneemissionestimatesTheGlobalMethaneTrackercoversallsourcesofmethanefromhumanactivity.Fortheenergysector,theseareIEAestimatesformethaneemissionsfromthesupplyoruseoffossilfuels(coal,oilandnaturalgas)andfromtheuseofbioenergy(suchassolidbioenergy,liquidbiofuelsandbiogases).Fornon-energysectors-waste,agricultureandothersources-referencevaluesbasedonpubliclyavailabledatasourcesareprovidedtoenableafullerpictureofmethanesources.UpstreamanddownstreamoilandgasOurapproachtoestimatingmethaneemissionsfromglobaloilandgasoperationsreliesongeneratingcountry-specificandproductiontype-specificemissionintensitiesthatareappliedtoproductionandconsumptiondataonacountry-bycountrybasis.OurstartingpointistogenerateemissionintensitiesforupstreamanddownstreamoilandgasintheUnitedStates(Table1).TheUSGreenhouseGasInventory(USEPA52023)isusedalongwithawiderangeofotherpublicly-reported,credibledatasources.Thehydrocarbon-,segment-andproductionspecificemissionintensitiesarethenfurthersegregatedintofugitive,ventedandincompleteflaringemissionstogiveatotalof19separateemissionintensities.Table1.CategoriesofemissionsourcesandemissionsintensitiesintheUnitedStatesHydrocarbonSegmentProductiontypeEmissionstypeIntensity(massmethane/massoilorgas)OilUpstreamOnshoreconventionalVented0.36%OilUpstreamOnshoreconventionalFugitive0.09%OilUpstreamOffshoreVented0.36%OilUpstreamOffshoreFugitive0.09%OilUpstreamUnconventionaloilVented0.72%OilUpstreamUnconventionaloilFugitive0.18%OilDownstreamVented0.004%OilDownstreamFugitive0.001%OilOnshoreconventionalIncomplete-flare0.06%OilOffshoreIncomplete-flare0.01%OilUnconventionalIncomplete-flare0.04%NaturalgasUpstreamOnshoreconventionalVented0.29%NaturalgasUpstreamOnshoreconventionalFugitive0.11%NaturalgasUpstreamOffshoreVented0.29%HydrocarbonSegmentProductiontypeEmissionstypeIntensity(massmethane/massoilorgas)NaturalgasUpstreamOffshoreFugitive0.11%NaturalgasUpstreamUnconventionalgasVented0.43%NaturalgasUpstreamUnconventionalgasFugitive0.17%NaturalgasDownstreamVented0.15%NaturalgasDownstreamFugitive0.10%TheUSemissionsintensitiesarescaledtoprovideemissionintensitiesinallothercountries.Thisscalingisbaseduponarangeofauxiliarycountry-specificdata.Fortheupstreamemissionintensities,thescalingisbasedontheageofinfrastructure,typesofoperatorwithineachcountry(namelyinternationaloilcompanies,independentcompaniesornationaloilcompanies)andaverageflaringintensity(flaringvolumesdividedbyoilproductionvolumes).Fordownstreamemissionintensities,country-specificscalingfactorswerebasedupontheextentofoilandgaspipelinenetworksandoilrefiningcapacityandutilisation.Figure1MethodologicalapproachforestimatingmethaneemissionsfromoilandgasoperationsMeasurementstudiesGovernanceindicatorsRuleoflaw.regulation.SatellitereadingsUSemissionsintensitiesCountryemissionsintensitiesActivitydataCountry-levelmethaneemissionsIndustryindicatorsOperator;age;flaring;pipelinelengthCountryscalingfactorsIEA.CCBY4.0.Thestrengthofregulationandoversight,incorporatinggovernmenteffectiveness,regulatoryqualityandtheruleoflawasgivenbytheWorldwideGovernanceIndicatorscompiledbytheWorldBank(2023),affectsthescalingofallintensities.Someadjustmentsweremadetothescalingfactorsinalimitednumberofcountriestotakeintoaccountotherdatathatweremadeavailable(wherethiswasconsideredtobesufficientlyrobust),suchascomprehensivemeasurementstudies.Thisincludesdataonsatellite-detectedlargeemittersandubasin-levelinversions,lwhichusesatellitereadingstoassessmethaneemissionsacrossawideroilandgasproductionregion,basedondataprocessingbyKayrros,anearthobservationfirm(seeBox1.6).Italsoincludesspecificpolicyeffortstocontrolmethaneemissionsfromtheoilandgassectors,astrackedintheIEAPOIiCieSDatabase.Table2providestheresultantscalingfactorsinthetopoilandgasproducers(thecountrieslistedcover90%ofglobaloilandgasproduction).ThesescalingfactorsaredirectlyusedtomodifytheemissionsintensitiesinTable1.Forexample,theventedemissionintensityofonshoreconventionalgasproductionintheRussianFederation(hereafter,Russia)istakenas0.29%×1.7=0.49%.Theseintensitiesarefinallyappliedtotheproduction(forupstreamemissions)orconsumption(fordownstreamemissions)ofoilandgaswithineachcountry.Table2.ScalingfactorsappliedtoemissionintensitiesintheUnitedStatesCountryOil&gasproductionin2023OilDownstreamGasmtoeUpstreamUpstreamDownstreamUnitedStates17241.01.01.01.0Russia10782.31.31.71.1SaudiArabia6430.80.40.60.4Canada4521.00.51.00.5Iran4253.10.91.40.9China4091.50.91.10.8UnitedArab2491.40.71.20.6EmiratesIraq2311.40.50.80.5Qatar2271.10.61.00.6Norway2010.00.00.00.0Brazil1961.71.31.71.3Kuwait1631.40.71.10.7Algeria1584.71.42.11.4Australia1520.80.50.60.5Mexico1331.60.91.10.8Kazakhstan1162.81.42.51.4Nigeria1063.81.82.41.8Oman911.60.71.00.7Malaysia902.21.11.51.1Indonesia853.21.52.11.5Egypt852.41.01.31.0Turkmenistan7715.84.56.64.5Argentina752.51.11.81.11.ibya723.71.01.71.0India673.21.62.11.5Box1IntegratingemissionsestimatesfromsatellitesTheGlobalMethaneTrackerintegratesresultsfromallpublicly-reported,crediblesourceswheredatahasbecomeavailable.Thisincludesemissionsdetectedbysatellites.Changesintheatmosphericconcentrationofmethanecanbeusedtoestimatetherateofemissionsfromasourcethatwouldhavecausedsuchachange.ThisisdonebasedondataprocessingbyKaarros,anearthobservationfirm,toconvertreadingsofconcentrationstoidentifylargesourcesofemissionsfromoilandgasoperations.Reportedemissionsencompassmethanesourcesabove5tonnesperhour.OilandgasemissionsdetectedbysatellitesarereportedasaseparateitemwithintheMethaneTracker.Theseestimatesarebasedonaconservativescalingupofemissioneventsdirectlydetectedtotakeintoaccounttheperiodwithintheyearwhenobservationscouldbemade.Thisiscarriedoutforallregionswhereobservationswerepossibleforatleast20daysintheyear.Theincreasingamountofdataandinformationfromsatelliteswillcontinuetoimproveglobalunderstandingofmethaneemissionslevelsandtheopportunitiestoreducethem.However,satellitesdohavesomelimitations: Existingsatellitesstruggletoprovidemeasurementsoverequatorialregions,northernareas,mountainranges,snowyorice-coveredregionsorforoffshoreoperations.Thismeansthattherearealargenumberofmajorproductionareaswhereemissionscannotbeobserved. Existingsatellitesshouldbeabletoprovidemethanereadingsgloballyonadailybasisbutthisisnotalwayspossiblebecauseofcloudcoverandotherweatherconditions.During2023therewerearound70countrieswheremethaneemissionsfromoilandgasoperationscouldbedetectedforatleast20days.1.argeemissioneventswereobservedin20ofthesecountriesin2023.CoveragetendstobebestintheMiddleEast,AustraliaandpartofCentralAsia,whereadirectmeasurementcouldbemadeevery3-5days.Ontheremainingdays,cloudcoverageorotherinterferencepreventedmeasurementoperations. Theprocessofusingchangesintheatmosphericconcentrationofmethanetoestimateemissionsfromaparticularsourcecanrelyonalargelevelofauxiliarydataandbesubjecttoahighdegreeofuncertainty.ThesatellitereadingsincludedintheGlobalMethaneTrackercurrentlyprovidedataonlyforlargeemittingsources.Thisis,ofcourse,subjecttoahighdegreeofuncertainty,butensuresthatcountry-by-countyestimatesprovideacomprehensivepictureofallmethaneemissionssources.Asadditionaldatabecomesavailablefrommeasurementcampaigns-whetherrecordedfromgroundoraerialprocessesorbysatellites-thesewillbeincorporatedintotheGlobalMethaneTrackerandestimatesadjustedaccordingly.IncompletecombustionofflaresOurapproachtoestimatingmethaneemissionsfromflaringreliesongeneratingcountry-specificandproductiontype-specificcombustionefficienciesthatareappliedtoflaringdataonacountry-by-countrybasis.GlobalestimatesofflaredvolumesofnaturalgasarebasedonreporteddatafromtheWorldBank'sGlobalGasFlaringReductionPartnership.ThesedataaretakenfromtheNationalOceanicandAtmosphericAdministration(NOAA)andthePayneInstitute(WorldBank,2023).Combustionefficienciescanreduceasaresultoflowerproductionrates,highandvariablewinds,andpoormaintenanceresultingfromlackofregulatorypolicy,enforcementorcompanypolicy(Johnson,2001;Kostiuk,2004).Weestimatecombustionbaseduponarangeofauxiliarycountry-specificdata: Oilproductiontype(unconventionalonshore,conventionalonshoreandoffshore),companytypeandproductionstart-upyear,basedonRystadEnergyUCubedata.CompanytypeisgroupedinMajors(ExxonMobil,Chevron,BP,RoyalDutchShell,EniSpA,TotaIEnergies,andConocoPhillips),NationalOilCompanies(NOCs)andOther(e.g.Independent,PrivateEquity).MaintenancelevelstoimproveflaringcombustionefficiencieswereappliedseparatelybycompanytypeassumingthatmorescrutinyfrominvestorsandthepublicisplacedontheMajorsascomparedtoNOCsorOther. FlaringdesignstandardsAPI521andAPI537wereconsideredgaugeflarestacksizes,assumingbest-casedesignandoptimalflareparametersduringearlyproductiontime(API,2014;API,2017). TheimpactofwindspeedwasincorporatedusingNASA,sPredictionofWorldwideEnergyResources(POWER)MeteorologyDataAccessViewer(NASA,2021).Onshorewindspeedswereassessedat10mandoffshorewindspeedsat50mtoreflectclosestheightofflarestacksinactualfacilitydesign.Windspeedvariabilityanditsimpactoncombustionefficiencywasincorporatedcorrespondingtothelocationofproduction. TheWorldBank'sWorldwideGovernanceIndicatorsdatabase(2023)wasusedasthebasistoassessthegeneralstrengthofregulatoryoversight.Adjustmentsaremadetoconsiderdataonsatellite-detectedlargeemittersandspecificpolicyeffortstocontrolmethaneemissionsfromtheoilandgassectors,astrackedintheIEAPoliciesDatabase.Countrieswithstrongerflaringregulationandstrongregulatoryoversightarecalibratedassumingcompaniesweremandatedtoquicklyinspectandrepairanymalfunctioningorpoorperformingflaresites.Countrieswithweakflaringregulationandlowlevelsofoversightareassumedtoperformlittletonoadditionalmaintenance.CoalminemethaneTheIEA,sestimatesofcoalminemethane(CMM)emissionsarederivedfrommine-specificorregion-specificemissionsintensitiesforAustralia,thePeople,sRepublicofChina(hereafter,China,)jIndiaandtheUnitedStates(whichcollectivelyaccountedforaround75%ofglobalcoalproductionin2022).EmissionintensitiesforcoalminesintheUnitedStatesarebasedonthelatestUSEnvironmentalProtectionAgency,sGreenhOUSeGaSReDoningPrOgramandUSGreenhOUSeGaSInventory.EmissionintensitiesforcoalproductioninAustraliaarebasedonitslatestNationaIlnVentoryReports.ThisissupplementedbydatasourcesthatprovideddisaggregatedCMMdataforChina(Wangetal.,2018;Zhlletal.,2017)andIndia(SinahA.K.andSahUJ.N.,2018)(IndiaMinistryofCoal,2018).Themine-levelCMMestimatesgeneratedinthiswayareaggregated,verifiedandcalibratedagainstcountry-levelestimatestakenfromsatellitesandatmosphericreadings(e.g.Sheneta1.2023:Dencletal.,2022;MilIeretal,2019).MethaneemissionsarecalculatedseparatelyforthethreemaincoaltypesintheGIObalEnerqyandClimateMOde1.steamcoal;cokingcoal;andlignite(seeTable3forasummaryofintensities).Methaneemissionsfrompeatminingarelikelytoberelativelysmallandarenotincludedinthisanalysis.Basedonthesedata,coalquality,minedepth,andregulatoryoversightareusedtoestimateCMMemissionintensitiesforminesinothercountriesforwhichtherearenoreliablemeasurement-basedestimates.TheWorldBank,sWorldwideGovernanceIndicatorsdatabase(2023)wasusedasthebasistoassessthegeneralstrengthofregulatoryoversightalongsidepoliciesrelatedtocoalminemethanetrackedintheIEA,sPoliCieSDatabase.Theemissionsintensitiesalsoconsiderestimatesfromsatellite-detectedlargeemittersandbasin-levelemissionsforcoalproducingregions,basedondataprocessingbyKavrros.Thedepthandtype(surfaceorunderground)ofindividualminesinoperationaroundtheworld,aswellastheassociatedcoalresource(thermalormetallurgical)andmethanegascontent,isbasedontheGEMGlobalCoalMineTraCkerandtheCRUdatabase.Deepercoalseamstendtocontainmoremethanethanshallowerseams,whilecoalofhigherrank(e.g.anthracite)hashighermethanecontentthancoaloflowerrank(e.g.lignite).Intheabsenceofanymitigationmeasures,methaneemissionstotheatmospherewillthereforetendtobehigherforundergroundminesthanforsurfacemines.Minesthathavebothsurfaceandundergroundoperationsareclassifiedasunderground.Min