欢迎来到课桌文档! | 帮助中心 课桌文档-建筑工程资料库
课桌文档
全部分类
  • 党建之窗>
  • 感悟体会>
  • 百家争鸣>
  • 教育整顿>
  • 文笔提升>
  • 热门分类>
  • 计划总结>
  • 致辞演讲>
  • 在线阅读>
  • ImageVerifierCode 换一换
    首页 课桌文档 > 资源分类 > DOCX文档下载  

    微专题16 对数函数及其性质(解析版).docx

    • 资源ID:1404565       资源大小:367.24KB        全文页数:38页
    • 资源格式: DOCX        下载积分:5金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要5金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    微专题16 对数函数及其性质(解析版).docx

    微专题16对数函数及其性质【方法技巧与总结】知识点一、对数函数的图象与性质a>0<a<图象Tr-N(i,o)O/(,0)×?性质定义域:(o,+)值域:R过定点(1,0),即X=I时,y=0在(0,+oo)上增函数在(O,+)上是减函数当0<x<l时,y<0,当XNl时,y0当OVX<1时,y>0,当XNI时,y0知识点诠释:关于对数式log.N的符号问题,既受.0.的制约又受N的制约,两种因素交织在一起,应用时经常出错.下面介绍一种简单记忆方法,供同学们学习时参考.以1为分界点,当,N同侧时,log”N>0;当”,N异侧时,log,NvO.知识点二、底数对对数函数图象的影响1、底数制约着图象的升降.如图(1)(2)知识点诠释:由于底数的取值范围制约着对数函数图象的升降(即函数的单调性),因此在解与对数函数单调性有关的问题时,必须考虑底数是大于1还是小于I,不要忽略.2、底数变化与图象变化的规律在同一坐标系内,当4>l时,随的增大,对数函数的图像愈靠近X轴;当OVaVl时,对数函数的图象随。的增大而远离X轴.(见下图)抻大湍大【题型归纳目录】题型一,对数函数与对数型函数图象问题题型二:对数函数性质的理解与运用题型三:对数不等式的解法题型四:对数函数图象与性质的综合问题题型五,反函数性质的高级应用【典型例题】题型一:对数函数与对数型函数图象问题【解析】当x>0时,/(x)=x+-,在X=I处取得最小值,排除C、D,X当XCO时,Ax)=1.-X为减函数,故选:A.lgx,0<x10例2.已知函数F(X)=41,若叫b,C均不相等,且/3)=/S)=(c),则血的取值范围x+6,x>102A.(1,10)B.(5,6)C.(10,12)D.(20,24)【答案】C【解析】函数的图象如图所示,不妨设<8<c,则一Iga=Ig8=-gc+6(0,l),所以b=l,0<c+6<1,2所以必=1,10<c<12,所以IoVHC<12,【解析】由/(一为=Tlg21-I=rlg21XI=fM且定义域为xxO),所以/O)为奇函数,排除C、D:又f(;)=;log2l;|=-;<f(l)=0,排除B.故选:A.变式1.已知函数/(x)=lg(x+l),若/()=0)(v力,则()A.(a-l)(Z?-l)>lB.(-1)(Z>-1)=1C.(-l)(-l)<lD.以上选项均有可能【答案】C【解析】作出函数/(x)=Ilg(X+1)1的图象,如图:由题意可知,lg(a+l)=lg(+l),且由图象可知,T<<O<b,b<O,所以即lg(a+l)+lg(Z?+l)=lg(a+l)(Z?+l)=O,所以(+l)(b+l)=l,pab-a+b=O,a+b=-ab,gJ(a-1)(/?-1)=«/?-«-/?+1=l+2tb<l,故选:C变式2.函数y=log"(x+l)(a>0,且")与函数),=/-2奴+1在同一直角坐标系中的图象大致是()【解析】当>时,y=log"(+l)在区间(T,+)上单调递增,此时y=Y-2r+l的对称轴为x=(>l),且对应方程的判别式/=4(/-1)>0,故a、B均不满足;当O<vl时,y=bg,(x+l)在区间(-l,+oo)上单调递减,此时),=炉一2公+1的对称轴为x=(0v0vl),且对应方程的判别式A=4(故C满足.D不满故选:C.变式3.已知三个函数y=罐,y=f,y=iog,的图象示,则()C.a>c>bB.c>a>bD.c>b>a【答案】C【解析】由指数函数y="图象可知,由索函数),=/的图象可知,b<0,由对数函数y=log,/的图象可知0<cvl,故可得4>c>b,故选:C变式4.设塞函数y=短,y=,y=B,指数函数y=。:,y=4,),=*,y=4:,对数函数y=log%苍y=g,2乂y=g,%,y=Iog匕X在同一坐标系中的图象如下图所示,则它们之间的大小关系错误的是().C.0<<<1<h2<hlD.<b4<by<<bx<b2【答案】C【解析】对于A:要判断的是塞函数y=K的图像,根据y=V、y=/、y=/的图像可以判断c1<0<c3<l<c2,故AiE确;对于B:要判断的是指数函数),=优的图像,作出广1,看交点,交点高,底数越大,所以0<a4<a3<<al<a2t故B正确;对于C、D:要判断的是对数函数y=log;的图像,作出产I,看交点,交点越靠由,底数越大,所以0<<<l<<h2,故D正确,C错误;故选:C/、2-3x-2x2,x0,一/、/变式5.已知/U)=NgMX>o,若关于X的方程“同=2(ZeR)有四个不相等的实根Xpx2,x3,X4,则为X2X3X4的取值范围是()aH)bo>)co【答案】D【解析】y=2f3x+2=2(x+,(x0),y=lg,x>O,75由函数/(力的图象可知方程/(X)=机有四个不同的实根时2m<?,O设y=m与y=_+书,(工<0)的交点的横坐标为4吃,3设XlVX2,则r20,且不+工2=-1,XlX20,设y=机与y=lgM,>O交点的横坐标为3,%4,则再>0,X4l>0,由IlgWlTlgXJ得Ig3=-Igz,X3X4=1,2JIo.xM24e1.io故选:D.变式6.当O<xv1时,16x<logflx,则的取值范围是A.(,1)B.C.(0,g)D.(0,;【答案】B【解析】当时,16'el,2,log11x<O,不成立,1111当O<vl时,当X=W时,164=k>g<,-,解得:«=,变式7.已知函数y=log,(x-l)+l(0>0且工1)恒过定点A(XO,%),且满足/叫)+"%=l,其中a,n21是正实数,则二十1.的最小值()mnA.4B.22C.9D.2【答案】C【解析】由y=lg(Al)+l过定点(2,1),.21,C、/21、U2/w2-2m2nCxl.,.,2rn2n.1rtl1,a.u.+=(2w+w)(-+)=5+5+2J=9,当且仅当=»即冽=;时取等号.mnmnnniynmnm3故选:C.变式8.已知函数y=log,1-3)+2(>0且wl)的图象恒过定点P,点P在累函数y=/*)的图象上,则Igf(4)+Igf(25)=()A.-2B.2C.1D.-1【答案】C【解析】函数y=log,(-3)+2中,令"3=1,解得“4,此时y=log,+2=2;所以函数y的图象恒过定点尸(4,2),又点P在黑函数y=(x)=T的图象上,所以¥=2,解得根二0.5;所以/(x)=x°s,所以lg(4)+lg"25)=lg(4)(25)=lgl0=1.故选:C.变式9.已知4,4,/分别为方程2'=l°g巴fiy=Iog2X,(;)=IogjX的根,则七,X一看的大小关系为()A.A:,<x3<x2B.Xi<X2<X3C.Xy<X<X2D.X3<X2<X1【答案】A【解析】在同直角坐标系中作出函数y=2"y=flT,y=log2%和尸咋尸的大致图像,如图所示.由函数y=2'与)'=l°g;X图像的交点的横坐标为为,函数),=flj与Iy=Iog2X图像的交点的横坐标为巧,函数y=(g与y=bg;X图像的交点的横坐标为七,知X<X3<W故选:A.题型二:对数函数性质的理解与运用例4.已知函数f(x)=m+k)gM2的定义域是1,2,且f(x)<4,则实数机的取值范围是()B.(-8,2)D.(2,+oo)A.(-8,2C.2,+8)【答案】A【解析】因为函数Fa)=m+log22的定义域是1,2,所以函数f(x)=w+Iog2x2=m+2Iog2,且函数/CO在12上递增,所以函数/(x)的值域为见加+2,因为/(力4,所以R+24,解得z2,故选:A例5.已知函数Fa)=Ig(f+>q3,则/的值域为()A.0,+)B.OJ)C.Ig2,lD.0,1【答案】D【解析】因为x-1.3,所以f+,o,所以/(K)=Igk2+)eo,故选:D例6.已知函数F(X)=W的值域为9则的取值范围是()A.1-00,2B.D.【答案】D【解析】由题意可得当x21时/(x)=lnx+l,所以/W的值域为口,+8),设XVl时,f()的值域为A,则由/(八)的值域为R可得(-J),l-2cr>01-2+31,解得Ovg,即0,|1.故选:D变式10.已知函数"力=log2N,g(x)=a-2xt若存在5,Z1,2,使得/()=g(w),则实数。的取值范围是()A.(,2)<j(5,+)B.(-,2kj5,+oo)C.(2,5)D.2,句【答案】D【解析】当lx2时,Iog21/(x)Iog22,gp(x)l,则/的值域为0,1,当lx2时,a-4g(x)a-2t则g(x)的值域为一2,因为存在多使得)三=go),IjliJa-4,-2O,l0若-4,-211OJ=0,则1<a-4或0>4-2,得>5或<2,则当-4,a-2O,lw0时,25,即实数”的取值范围是2,5,A,B,C错,D对.故选:D.变式U.己知/*)=10电(x2-0r+)的值域为&且,在(-3,7)上是增函数,则实数的取值范围是2()A.20B.-3a0或42C.-20或4D.0<a4【答案】B【解析】因为函数/J)=bgx2-ax+d)的值域为R,2所以2-ar+取得一切正数,即方程f一必+=。有实数解,得A=2-40,解得00或4:又函数/(")=lo三l(*一"+。)在(-3,-1)上是增函数,2所以函数y=f-or+在(-3,-1)上是减函数,且2-公+>0在(-3,-1)上恒成立,则,2,解得白一1 +40综上,实数4的取值范围为-gO或4.故选:B变式12.«=Iog080.9,Z?=Iog120.9,°=1.2°巴则,b,C的大小关系为()A.a>h>cB.a>c>bC.c>b>aD.c>a>b【答案】D【解析】O=IogOSIVa=1°go,809<Iog080.8=1,b=Iog120.9<Iog12I=O,c=1.29>1.2°=1,4,b,C的大小关系为b<a<c.故选:D.变式13.已知logQ>log.3>0,则下列不等式一定成立的是()A.->B.(;)<(;)C.Iog2(a-Zj)>0D.2"”<1【答案】B【解析】IogQZogJX),由换底公式,<0<log3Z><log36r,解得>h>l,'-<-*A选项错误;ab函数/(x)=6J为减函数,gj<(gj,B选项正确;4一匕>0,但。一匕>1不一定成立,不能得到iog2(-b)>0,C选项错误;2w-ft>20=bD选项错误.故选:B变式14.函数y=log2(2x-J)的单调递减区间为()A.(1,2)B.(1,2C.(0,1)D.OJ)【答案】A【解析】由2x->o,得OVXV2,令t=2x-%2,则y=log2%=2x-f在(0,1)上递增,在(1,2)上递减,因为y=iog2f在定义域内为增函数,所以F=IogzQx-Y)的单调递减区间为(1,2),故选:A变式15.己知函数/(力=1“(6-奴)在(0,2)上为减函数,则实数,的取值范围是()A.(1,3B.(1,3)C.(0,1)D.(l,+)【答案】A【解析】因为>0,所以力=6为减函数.又由函数/(x)=log"(6-0r)在(0,2)上为减函数,可得函数()=6or在(0,2)上大于零,旦>l,故有tt>0'解得故选:A.变式16.设函数力=Ig(Y+1),则使得f(3x-2)>f(x-4)成立的X的取值范围为()【答案】D【解析】方法一:.(x)=(x2+l).由3x-2)>f(x-4)得lg(3x-2)2+l>lg(x-4)2+l,则(3x-2)2+1>(x-4)2+1,解得x<T或x>方法二:根据题意,函数"x)=g(V+l),其定义域为R,有/(x)=g(f+l)=(x),即函数/(x)为偶函数,设f=d+,则y=gf,在区间0,+8)上,r=+为增函数且r,y=3在区间1,+8)上为增函数,则/()=g(V+)在O,*)上为增函数,/(3x-2)>/(x-4)=/(3x-2)>/(x-4)=>3x-2>x-4,3解得x<T或x>,故选:D.变式17.函数八6=唾_1(一/+31+4)的单调增区间为()【答案】C【解析】由一2+3+4>0=T<x<4,二次函数y=-/+3+4的对称轴为:X=1,所以二次函数的单调递增区间为114),递减区间为,4),而函数丁=Iogj/是正实数集上的减函数,根据复合函数的单调性质可知:2函数f(x)=l°gj*+3x+4)的单调增区间为(|,4),故选:C变式18.若函数Fa)=M+log?/在区间1,2上恒有f(x)4,则实数的取值范围是()A.(-,2B.(YOC.+oo)D.(2,+oo)【答案】A(解析】因为f(X)=6+Iog2X2在1,2上单调递增.要使/(x)4恒成立;则只需/(2)<4nm+2<4n机<2故选:A.变式19.已知f(x)=ln(+l),g(x机的取值范围为()(11(A.句B.°-*Hx2«1,2,使得XJzg(X2),则实数【答案】D【解析】函数/(x)=In(X2+1)在0,3上单调递增,则有f(x%n=f(0)=0,又g(x)=(;)-机在口,2上单调递减,则有g(x)min=g(2)=(-机,因为e0,3,1,2,使得尸是得:m0,解得m1,所以实数机的取值范围是g+)故选:D变式20.已知函数f(x)=l0g2x(xw的最大值与最小值的差为2,则。=()A.4B.3C.2D.2【答案】C【解析】由题总得/(幻在P,上为单调递增函数,a.所以f(%)min=/()=2J,/(X)max=/()=2。,所以log,-log,1.=og,/=2,解得“2=4,a=±2a又>0,所以4=2.故选:C题型三:对数不等式的解法例7.已知函数/(力=1%2(工+1)-可,则不等式力>0的解集是.【答案】(0,1)【解析】由题意log2(x+l)>x0,则X+1>1,即x>0,此时x+l>2',而y=x+l、y=2*均递增,它们的函数图象如下:由图知:当OvxVI时x+l>23当x>l时x+l<2'综上,/(力>0的解集是(0,1).故答案为:(0,1)例8.已知函数/(外是定义在R上的偶函数,且在0,+)上是减函数,/f-J=0,则不等式/(1,8力>0的解集为一.【答案】&2)【解析】/()是定义在K上的偶函数,艮在0,+)上是减函数.-=0,-g)=0则不等式1。队力>0等价为不等式嗔8力>/(£|,即log8x<=>i<Iog8x<=><x<2,即不等式的解集为(g,2).故答案为:(;,2)例9.己知函数/(x)=log2x-l,则不等式f(l)W2的解集为.【答案】-4,0)U(0,4【解析】由/(l-x)=log2WW2,得0<H4,解得-4x4且x0.所以不等式的解集为T,0)u(0,4,故答案为:T,0)d(0,4变式21.不等式lgx>l的解集为.【答案】(10,出)【解析】由lgx>,有lg>lgl,根据对数函数的单调性有:x>10,所以不等式的解集为(10,48)故答案为:(10,÷>).变式22.不等式叫“(47)>一蜒尸的解集是.Q【答案】当时,解集为(0,2);当OVaVI时,解集为(2,4)【解析】v-l0gx=10g,a.原不等式等价于log,(4-x)>log,X,x>0当白>l时,4-x>0,解得OVXV2.4-x>Xx>0当OVaVI时,>4-x>0,解得2VV4.4-x<x当时,不等式l°g”(4-x)>Togx的解集为(0,2);a当OVaVI时,不等式电(4-刈>7叫”的解集为(2,4)a故答案为:当时,解集为9,2);当0va<l时,解集为(2,4)变式23.已知实数>0,且满足53"2>5',则不等式Ioga(3x+2)<logq(8-5x)的解集为【答案】【解析】由实数>0,且满足53.>53,根据指数函数的单调性,可得为+2>4+l,解得0<”1,所以函数y=logr为单调递减函数,3x+2>0则不等式Iog.(3x+2)<log"(85x),可得85x>0,3x+2>8-5x即不等式的解集为故答案为:(1)变式24.不等式】脸(4'-3)>工+1的解集是.【答案】(1%3,)解析Iog2(4'-3)>x+1即为4'3>22',故(2,一22-3>O,所以(2'+1)(2-3)>0即2'>3,所以x>log23,故答案为:(Iog23,4co).变式25.不等式142卜2+1)<2的解集为.【答案】(-71。)【解析】log2(x2+l)<2:log2(x2+l)<log24,所以V+1V4,解得:-J<x<3解集为(-66)故答案为:(-6.6)变式26,已知不等式睡2(纨2-2x+5)>l的解集为R,则。的取值范围是.【答案】【解析】所给条件等价于此一的解集为R,即加_21+3>0的解集为R,由此可得:x-2x+5>0fa>O1AzIIo11解得:=4-12a<O3故答案为:变式27.不等式log2(Zr+3)>log2(5-6)的解集为.【答案】xg<x<3)2x+3>0,【解析】解析:由,5x-6>0,2x+3>5x-6,3X>2y解得<t>,BP<x<3,故不等式的解集为但,VXV3.X<3,故答案为:x|§VXV3变式28./=;:,则不等式/(2r)</(幻的解集为一【答案】<i【解析】由函数的解析式绘制函数图象如图所示,易知函数为偶函数,且在区间(0,+8)上单调递减,不等式的解集为:<D.变式29.已知函数/(x)=+lg,则不等式/(幻>1的解集为【答案】出>1或<-l【解析】函数IX)=炉+IgIK为偶函数,当>0时,函数/(力单调递增,/(1)=1,则不等式>1的解集为M>i,故当XeO时,不等式f()>l的解集为W%vT,综上,可得不等式/(X)>1的解集为xx>1或XV-1,故答案为:%k>或<-.3v+,(x<0)变式30.已知函数“力=ogM>0),则不等式/(力>1的解集为一【答案】193r+,(x0)【解析】/(x)="logX(x>),<0、卜,/(x)>1ojx+或logx>1,I3解得一1vxO或O<x<g,即-不等式f(%)>l的解集为故答案为:(TW).变式31.已知函数/(X)=£,.teR,则不等式/(log,2)>g的解集为.【答案】(0,1)(2,+8)【解析】易知/(x)=77eR为减函数,且/(I)=?"=:,1+21+23所以/(logrr2)>等价于/0。&2)>/(1),所以log。2<1=Iogw2<Iogua.所以>2或0<vl.故答案为:(0,DU(2,+)题型四:对数函数图象与性质的综合问题例10.已知定义在R上的函数/(X)满足/(-力-/(x)=0且f(x)=log2(2'+l)+dg(x)=f(x)+x.(1)求/(力的解析式;若不等式8(4,-。2+1)>4-3)恒成立,求实数。取值范围;(3)设MX)=Xx-2侬+1,若对任意的e0,3,存在x21,3,使得g(%)(占),求实数加取值范围.【解析】由题意知,R)g2(2'+1)-米-1呜(2'+1)-履=0,即2kx-Iog2(2-t+1)-Iog2(21+1)-Iog2;=-x,所以左=一:,故f(x)=l0g2Qx+l)-gx.由知,g(x)=f(x)+%(2*)+%所以g(x)在R上单调递增,所以不等式g(4=a2+l)>g(-3)恒成立等价于4-2'+l>-3,Ax+4即恒成立.x4»4/4"44设,=2,则f>0,-=!-=t+-4,当且仅当f=2,即X=I时取等号,2xtt所以<4,故实数的取值范围是(F,4).(3)因为对任意的AiW0,3,存在巧41,3,使得g(Jg2),所以g(x)在0,3上的最小值不小于MX)在1.3上的最小值,因为g(x)=log2(2'+l)+;X在0,3上单调递增,所以当0,3时,g(%=g(0)=l,又z(x)=X2-+1的对称轴为X=jXl,3,当机£1时,MX)在1,3上单调递增,(x)n,n=(l)=2-2ml,解得m2;,所以:m4I:2当l<m<3时,MX)在1,加)上单调递减,在也3上单调递增,(x)min=hn)=1-m21,解得zR,所以lv/v3:当m3时,MX)在1,3上单调递减,Winin=(3)=10-6nl,解得加1,所以m3,综上可知,实数用的取值范围是g,+81例11.已知函数/(x)=(log2%-2)(logn+;)求不等式力>2的解集;当xel,16时,求该函数的值域;若»<水岛不对于任意工£46恒成立,求用的取值范围.W=(2og4x-2)log4x+I=21og*-Iog4X-I【解析】(1)I2J;由/(x)>2,即21og%-log4x-3>0.3计算可得log,x>1或Sg4X<T,.,.0<x<-«£>84故解集为:-(Kr<>8./(x)=(21og4x-2)log4x+号=21og-log4x-l,xl,16(2) I,令f=IogA则z0,2力二2产一,一1=2,一:)-p1 9当f=:时,有最小值-W,48当时,有最大值5;9"所以值域为-5.O_(3)令f=IogE,则问1,2,原式可化为相>2-;-1在f1,2上恒成立.记函数g(t)=2r-y-lir1.2上单调递增,g(f)1三=g(2)=,故加的取值范围是(/+/).例12.已知函数/(x)=0r2T+2-1(4>0).若/(“在区间口,2为单调增函数,求”的取值范围;设函数/(x)在区间口,2上的最小值为g(),求g()的表达式;设函数&)=(;)+嚏2击,若对任意x"2«i,2,不等式/(JMq)恒成立,求实数。的取值范围.【解析】(1)因为/(x)="2-*+2zT(">°)的图象开口向上,对称轴方程为A一五所以“可在区间U,2为单调增函数需满足(1,a>0,解得g(2)当0<五",即时,在区间RH为单调增函数,止匕时g()=(l)=3-2.当132,即!时,力在区间上是减函数,在区间;,2上为增函数,此时2a421.2aJ|_2。Jg(八)=f(-)=2a-l.2a4a当,->2即0va<4时,/(可在区间1,2上为减函数,2a4此时g()=/=6。-3,6a-3,<7(0,-)4综上所述,g()="2-;-l,!,!4。423-2,(,+)(3)对任意斗七旬1,2,不等式7(8)之"(占)恒成立,即/WminMX)ma,由(2)知,/(x)min=g(),因为人(X)=()'÷log?r=()r+IogI(X+1),2x+22所以h(x)在1.2上为单调递减函数,所以力*)三x=()=log12=-,2E2当0<<:时,由g()A(X)max得6-3-g解得弓(舍去)当!时,由g5)N力(x)ma得2。一1,即8。2-2一整0424a2.(4+l)(2t7-l)0,解得1.或aw',所以242当>:时,由g3)之(%)2得3-2-:,解得!,所以>J.2222综上,实数。的取值范围+oo)./7Y变式32.已知。/0,函数/(刈=1。氏.若=3,求不等式/(X)<1的解集;(2)若。>0,求证:函数y=Cx)的图象关于点P(2,log2")成中心对称;若方程/(x)Tog2(""2)=0的解集恰有一个元素,求。的取值范围.3x1£/、ilog,<1【解析】(1)当斫3时,不等式“x)<l,即4-X,QrQ所以0<±<2,解得0<x<3,4-x5Q故不等式的解集为(05):(2)证明:因为>O,则函数/(X)的定义域为(0,4),任取Xt(-2,2),则2X(0,4),2+4(0,4),则f(2-X)+f(2+x)=Iog2"?”+1暇A)、=lo§2/=2Iog2a,4-(2-x)4-(2+x)所以函数y=(x)的图象关于点R2,log2加成中心对称;由log,log,(+x-2)=0,可得f+(2。-6)X-2(2。-4)=0»4-x解得=2,x2=4-2a,若X=W,则斫1,检验定义域,符合题意;若X=2是原方程的解,则+-2>0,a>0;=4-2«是原方程的解,则-2+4-2>0,即<2.因为方程f(x)-log2(+-2)=0的解集恰有一个元素,故当X=2是原方程的解,x2=4-2a不是原方程的解时,则。之2:当X=2不是原方程的解,=4-2是原方程的解时,0,又40,则<0,所以实数a的取值范围为(-,0)52,+8)=1.变式33.已知函数f(x)=k)g2(x+a)3>0),当点M(x,),)在函数g(x)的图象上运动时,对应的点T(3x,2y)在/(%)的图象上运动,则称g(X)是/(x)的相关函数.解关于X的不等式f(x)<l;(2)若对任意的XW(OJ),/()的图象总在其相关函数图象的下方,求。的取值范围;设函数产(X)=F(X)-g(x),x(0,l),当=l时,求IFa)|的最大值.x+a>0【解析】依题意得1唾2('+")<1fx+a>O则<x+a<2所以一"<x<2-a,所以原不等式的解集为d-<x<2-.(2)由题意得2"log2(3x+。),所以丁=glog2(3x+),所以/(x)的相关函数为g()=gk)g2(3+)依题意,对任意的KW(O),/(x)的图象总在其相关函数图象的下方,即当KW(OJ)时,f(x)-g(x)=Iog2(x+«)-log2(3x+«)<01Mcl.由,3x+>0,对任意的Xt(Ql)总成立,。20,结合题设条件有。>。,在此条件卜,等价于当Xw(Oj)时,log2(x+vlog2(3x+。)恒成立,即(x+)2<3x+,SPx2+(2-3)x+a2-a<0.设(x)=x2+(2-3)x+a2-a,要使当xw(0,l)时,MX)VO恒成立,(0)0a2-a0只需2二/八,即<,CC成立,(l)0a2+a-2<0解得0l,即的取值范围是(0,1.2一(N)(3)由(2)可得当。=1时,在区间(0,1)上,"x)<g(x),即I尸(切=g(x)-f(x)=<g27-.t3x+l令3x+l=(1<<4),则X=-所以14因为n+-4(当且仅当=2时,等号成立),1Q可得1.9,当X=;时,等号成立,Z93Q满足XW(0,1),则r的最大值为,81O3所以小(x)I的最大值是彳Iog27=log23-202题型五:反函数性质的高级应用例13.若实数。,夕满足e0=2,n=2i则4=()A.eB.1C.ID.2【答案】D22【解析】由ae°=2可得小=4,所以是方程e'=4的解,aX2即。是),=e与y=上图象交点的横坐标,X22由夕In夕=2可得In夕=下,所以A是方程InX=W的解,PX2即夕是y=lnx与y=W图象交点的横坐标,X2在平面直角坐标系中分别作出y=e',y=nxty=的图象如图所示,X因为y=e*与y=lnx互为反函数,图象关于直线y=x对称,2而y=4的图象也关于直线y=x对称,X所以两个交点AD,中总关于直线"X对称,2a=所以B,可得=2,2C故选:D例14.已知>l,若不是函数/(x)=xlog-2021的一个零点,/是函数g(x)=M'-2021的一个零点,则工用的值为()A.1【答案】BB.2021C.2021D.4016【解析】因为是函数f(x)=HOgM-2021的一个零点,是函数g(x)=m'-2021的一个零点,12021X2021所以KIOg“石-2021=0,七/-2021=0,即logtf%=,*=,XX2/、2021z、2021设函数y='(>l)与y="i的交点为A,则A(X2,%),M=,X%2设函数y=k>gtlx(>l)与y=0红的交点为8,则B(,y),Xi因为函数,,=1。8>(。>1)与函数、=优(。>1)互为反函数,所以其图象关于y=x对称,20212021所以点AB关于y=x对称,即内=%,所以由为=得M=,X2X2例15.若关于X的方程x+bg5*=4与+5'=4的根分别为M、,则加+的值为()A.3B.4C.5D.6【答案】B【解析】由题意,可知log5X=+4,5'=+4,作出函数y=bg5X,y=5xfy=-+4的图像(如图),A、8两点的横坐标分别为h,且A、8关于直线y=x对称,AB的中点为C,联立"Zi可得点Iy=T+4。的横坐标为2,因此m+=4.故选:C.变式34.设函数/(x)的图象与y=2"“的图象关于直线y=-x对称,若,叶=2020,/(-2w)+(-2m)=2,则a=()A.1011B.1009C.-1009D.-1011【答案】A【解析】因为函数y=(x)的图象与y=2的图象关于直线y=对称,令/(2n)=p,/(-2)=q,则p+q=2;m=-p+an=-q+a故(-p,2m),(-g,2«)在y=2+a的图象上,所以2"i=2”,2=2'q+a,两式相加得加+=(p+q)+24,所以2a=m+n+p+q=2020+2=2022,解得=1011,故选:A.变式35.设方程2,+工一3=0的根为方程1/0工+2工-6=0的根为/,则+夕=()A.1B.2C.3D.6【答案】C【解析】因为方程2'+jv-3=0的根为。,可得是),=2。和y=3-X两个函数图象交点A的横坐标,由log7x+2x-6=07iJ21og2x+2x-6=0即Iog2x=3-x,因为方程Iog7x+2-6=0的根为?,可得夕是y=iog2v和y=3-两个函数图象交点B的横坐标,由于y=2"和y=IogzX互为反函数,图象关于37=%对称,所以A8两点关于y=对称,所以A(a,0,BSa),因为点A(,在直线y=3上,可得夕=3-。,所以+7=3,故选:C变式36.已知函数/(x)=U+a2的零点为。,g(x)=lg(x-l)+x-3的零点为力,则+A=()A.1B.2C.3D.4【答案】C【解析】设MX)=g(x+l)=lgx+x-2,由于函数g(x)=lg(x-l)+x-3的零点为6,则函数MX)的零点为b-.令/(x)=0,可得l(=2-x,令MX)=0,可得出IgX=2-尤,在同一平面直角坐标系中作出函数y=101.),=lgx、y=x、y=2的图象,如下图所小:由于函数y=ioa、y=ig的图象关于直线丁=%的对称,直线y=2-与直线y=垂直,设直线y=2-x与函数y=I(的交点为点A,直线y=2

    注意事项

    本文(微专题16 对数函数及其性质(解析版).docx)为本站会员(夺命阿水)主动上传,课桌文档仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知课桌文档(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-1

    经营许可证:宁B2-20210002

    宁公网安备 64010402000986号

    课桌文档
    收起
    展开