Capgemini-技术愿景2024-推动未来.docx
EXECUTIVECOMPANIONTECHNOVISION2024/PromptthefutureTAB1.ECONTENTSOFINTRODUCTION05WHICHTECHNO1.OGY(MEGA)TRENDSWI1.1.SEEINF1.ECTIONPOINTSIN2024?QGenerativeArtificialIntelligence-SmallWillBetheNewBig07QuantumTechnology-WhenCyberMeetsQuantum08Semiconductors-Moorezs1.awIsn'tDead,ButItIsChanging10Batteries-ThePowerofNewChemistry11SpaceTech-AddressingtheEarth'sChallengesfromOuterSpace13Beyond2024-OtherTechnologiesShapingtheNext5Years15TECHNOVISION2024SUMMARIZED1622TECHNOVISION2024:WHASNEW?19FURTHERRESEARCH/PromptWhatwillsmarttechnologyinthefuturelooklike?MichielboreelPASCA1.BRIERExecutiveVicePresidentandGlobalChiefTechnologyOfficeratSogetizpartofCapgeminiGroupChiefInnovationOfficerandmemberoftheGlobalExecutiveCommitteeGenerativeyWhencybermeetsQuantumQuantumTSemiconduerofnewchemistryBatteriesSpaceTechWHICHTECHNO1.OGY(MEGA)TRENDSWI1.1.SEEINF1.ECTIONPOINTSIN2024?Whenitcomestoshapingthefuture,alltechnologytrendsmightholdequalsignificance,asforecastingisoftenachallenging,ifnotanimpossibletask.However,certaintrendsemergeasmoreprominentduetotheiranticipatedsubstantialimpactandtheexpectationofsignificantbreakthroughsinthenearfuture.Wehavepinpointedfivesuchprominenttechnologymegatrendsthatshouldhavein刊ectionpointsin2024:IIntelligence-Smallwillbethenewbigoorezs1.awisn'tdead,butitischangingsingtheearth'schallengesfromouterspace6TechnoVision2024:ExecutiveCompanionWhyitmatters:ThedevelopmentsinGenerativeAlareindicatinganevolutiontowardsamoreaccessible,versatile,andcost-effectivetechnology.TheinnovationsmentionedbeforewillenableorganizationstoscaletheirGenerativeAlusecasesfasterwhilealsoderivingmorelong-termvaluefromthetechnology.isstillmanyyearsaway.Nonetheless,2024willseevariousclaimsofanarrowquantumadvantageinspecializedtaskswithinlargerconventionalcomputationalWOrk刊。ws.Boostedbyearlysuccesses,broaderquantumadvantageswillappearinthecomingyears.Drivenbytheprospectofquantumadvantageinthenearfuture,companies,startups,andQUANTUMTECHNO1.OGY-WHENCYBERMEETSQUANTUMEntering2024,quantumcomputinghasdefinitivelylefttheeraoftheoreticalexplorationandenteredazUtiIity-ScaIezquantumcomputationage.AsdefinedbyIBM,/utility-scale7quantumcomputersprovidecomputingcapabilitiesbeyondthereachofclassicalcomputationsandopenadoortoaquantumadvantageinreal-worldcommercialquantumapplications.Assignificantchallengesinqubitqualityremain,alarge-scale,broadquantumadvantageAdditionally,asquantumcomputersaresupposedtobreakcommonlyusedpublic-keycryptosystems(suchasRSAandECC)oneday,alarge-scalemigrationtoquantum-safetechnologyisabouttostart.Drivenbytechnologicalimprovementsandregulatorypressure,2024promisestobeapivotalyearforquantumsafesolutions.Alreadyin2017,theNationalInstituteofStandardsandTechnology(NIST)initiatedapublicprocesstoselectquantum-resistantpublic-keycryptographicalgorithmsforstandardization.Theyrealizedthatpublic-keyinfrastructuresarecrucialtodigitaltrust,protectingeverythingfromwebconnectionsandemailtodigitallysigneddocumentsandcode.Thealgorithmsforasymmetriccryptographyinplacetodayrelyonmathematicallychallengingproblems,suchasfactoringverylargenumbers,whicharecomputationallydifficultforcurrentcomputers.Traditionalcomputerswouldtakeyearstobreakthesealgorithms.AsufficientlypowerfulquantumcomputerCondensedMatterPhysics:Understandingthebehaviorofcomplexmaterialsataquantumlevelcanrevolutionizematerialscienceandengineering.QuantumChemistry:SolvingtheSchrddingerequationforlargermolecules,whichclassicalcomputersstrugglewith,canleadtodrugdiscoveryandmaterialsbreakthroughs.ComputationalFluidDynamics:Addressingthechallengesinsimulatingfluidflow,essentialforaerodynamicsandclimatemodelling.PartialDifferentialEquations:Theseequationsarefundamentalinexpressingphysicalphenomenaandsolvingthemmoreefficientlywillprovidevalueinfieldslikefinanceandengineering.1.ogisticsandOperationsResearch:Optimizingsupplychainsandlogisticscanbenefitfromquantumcomputingbyfindingsolutionstocomplexoptimizationproblemsmorequickly.SamplingandMonteCarloMethods:Usedinstatisticalphysicsandfinance,thesemethodscanbequadraticallyfasteronaquantumcomputer,providingmoreaccuratemodelsandforecasts.couldsolvethesehardmathproblemsinamatterofminutesbyleveragingitsabilitytoprocessmultiplesimultaneousstates.NISTzsgoalistoestablishanewstandardbasedonevenhardermathproblems(e.g.latticecryptography)thataredifficultforbothtraditionalandquantumcomputers.Tobeclear,quantum-safealgorithmsdonotrequireaquantumcomputerthemselves;theyprotectagainstanattackleveragingaquantumcomputerwhentheybecomepowerfulenough.Inlate2022ztheUSGovernmentenactedthe"QuantumComputingCybersecurityPreparednessAct/whichpromisestocatalyzeaseismicshiftacrossindustries.ThisgroundbreakinglawmandatesthatallprivateentitiesconductingbusinesswiththeUSgovernmentmustmigratetoPQCwithinayearaftertheNISTstandardsarefinallyreleased.ThisshouldaffectPQCstandardsglobally.Thereleaseofthefinalstandard,combinedwiththenewregulationshouldintensifytherushtowardsaquantumsafefuturein2024.Organizationseverywhereneedtotakeimmediatestepstowardupdatingtheircryptographicsystemsandsoftwaretothenewquantumsafealgorithmsbecauseaveragemigrationwilltakesignificanttime.Althoughquantumcomputerscapableofbreakingtoday'sencryptiondonotexistyet,theriskofbadactorscollectingencrypteddatatodaywiththeintentionofdecryptingitlater(harvestnowdecryptlater),isveryreal.Astherushforquantumpreparednessintensifies,startingaroundmid-2024,industriesrangingfromfinancetohealthcarewilllikelyinvestheavilyinupgradingtheircybersecurityinfrastructures.Whyitmatters:ThisemergingshifttoPostQuantumCryptographypromisestoupendtheverybasisofcybersecuritystandardsglobally.Allbusinessleadersandtechnologyexpertswillbeaffectedbythisapproachingmilestone,whilemoreandmoreorganizationsbegintheirquantumtransition.Things/projectstowatchfor:Althoughenterprisescalequantumcomputingisprobablystillmanyyearsaway,promisingprogressisbeingmadeinseveralareas.GoogleandIBMbelievecommercialquantumsystems,applyingerrormitigationtechniques,areonlyafewyearsaway.Bothtechgiantshavealsoreleasedpublicroadmapsreachingonemillionqubits,by2029forGoogleand2030forIBM.Inthemeantime,hybridclassicaland'noisy'quantumcomputing(NISQ-NoisyIntermediate-ScaleQuantum)willdeliverthefirstpracticaluseinspecificproblemareas,whilewewaitforlarge-scalefault-tolerantquantumcomputerstobeavailable.SEMICONDUCTORS-MOORE,S1.AWISNTDEAD,BUTITIschangingThesemiconductorindustrystandsonthebrinkofarevolutionaryshiftin2024zinfluencedbyvariousfactorsthatarecollectivelytransformingitsdynamics.Throughout2023,therehasbeenanintensediscussionamongexpertsaboutthefutureofMoore's1.aw,whichpositsthatthenumberoftransistorsonanintegratedcircuitdoublesapproximatelyeverytwoyearsztherebyenhancingthecomputingpowerofamicrochip.Aschiptechnologyapproachesthe2-nanometer(0,0000001cm)scale,withthecostsofmanufacturingexpandingatanexponentialrate,questionsariseaboutthefeasibilityofcontinuingthistrendzespeciallyconsideringtheimpendingphysicalconstraintsatthe1-nanometerscale.However,2024ispoisedtodemonstratethatMoore's1.awisnotobsoletebutratherundergoingametamorphosis.We'relikelytowitnessshiftsinapproach,suchastheadoptionofverticalstackinginmulti-layerstructures,explorationofnon-siliconmaterials,andnewlithographytechniques.Inessence,wecanlabelthistechnologicalshiftasgoingfor'morethanMoorei.e.zaimingtosustainthegrowthincomputingpower,evenastraditionalmethodsofchipminiaturizationapproachtheirphysicallimits.Simultaneously,thesemiconductorecosystemissettoundergoreconfiguration.Thiswillencompasstheestablishmentofnewgigafactories,theadaptationtolocalregulations,theexpansionoffabricationcapacities,theintroductionofnovelbusinessmodels,andenhancedfoundryservices.Semiconductorcompaniesareexpectedtointensifytheirfocusoncateringtoindustry-specificdemandsbyproducingchipsthatsignificantlyenhancecustomerexperiences,markinganewerainsemiconductortechnology.Whyitmatters:Anaccelerateddigitaltransformationisexpectedacrossindustries,enabledbymorepowerfulconnectedobjects,fromsmartphonestoelectricvehiclestodatacentersandtelecoms.Thesetechnologicalbreakthroughswillbereflectedinshiftsintheecosystemofsemiconductorsitself,withnewgigafactorieszregulations,businessmodels,andfoundryservicesemergingin2024.OthersuseAltooptimizethepowerThings/projectstowatchfor:Crammingmorecomponentsontointegratedcircuitswillcometoanendbecauseweareapproachingtheboundariesofphysics.Despitethisinsurmountableasymptoticpeakofphysics,chipdesignisnowcontemplatinga1.xnanometerscale.However,energyandheatchallengesposesignificantchallenges.Inaddition,thecostoffabricationofsuchchipsgrowsaggressively.OneapproachtoimprovingperformanceandlowerenergyuseistoaddAlintothechip(IBMZSystems)toreducethemovementofdatatothecomputeandbackandhaveitavailableintheprocessorchipanditscaches.consumptionleveragingperiodsoflesseractivitywherenoteverycomputeresourceisbeingusedtoitsfullest.AnotherwaytoleverageAlistoassistthesoftwareengineerunderstandthetradeoffbetweentheperformanceofthesystemandnumbers.Iftheytheycanreducespecificallyfortheprecisionoftheneedmorebandwidth,theprecision,trainingreducedprecision,effectivelyexchangingahardwareproblemforasoftwareproblem.Otherapproachesincludeaddingmorenodesorusingheterogeneousarchitectureslikehandingofftaskstospecializedco-processorslikeGPUs,TPUszandXPUsexemplifiedbyNvidia,sHopper+Gracesolution,Intel'sSaphireRapidszandFalconShoreplatforms.Batteries-ThepowerofchemistryImprovingtheperformanceandreducingthecostsofbatteriesisamajorfocusforbothbusinessesandgovernments,astheindustrialstakesarehighforeachnation.Theaimistosupportelectricmobilityandacceleratelong-durationenergystorage,whichiscriticaltospeeduptheenergytransitiontorenewablesandtheaccelerationofsmartgrids.Therearefivekeyperformancecharacteristicsofbatterytechnologyevolution:EnergyDensity:Energydensityinbatteriesismeasuredintwoways:volumetric(Wh/1.)andgravimetric(Whkg)zindicatingtheenergystoredperunitvolumeormass.Thisiscrucialforelectricvehicles(EV)andstationaryenergystorage,wherebatterysizeandweightmatter.PowerDensity:Powerdensityreferstotheenergyabatterycanreleaseineachcapacity,withspecificpowerdenotingenergyperunitmass.Thechargingrate(C-rate)describesthepowerneededtochargeabattery,anddischargepowerindicatestheenergyoutputatanymoment.1.ifespan:Thelifespanofabatterydecreaseswitheachcharge-dischargecycle,affectingitslongevityandsuitabilityforitsoriginalpurpose.Eventually,batteriesshouldberepurposedorrecycled.Costs:Costisasignificantfactor,oftencalculatedperkWh.ForEVszachievingcostparitywithinternalcombustionenginevehiclesiskey,asthebatterypackisthemostexpensivecomponent.Safety:Safetyconcernsariseduetotheflammableliquidelectrolyteandthermalenergyreleasefromthecathodematerialafterseveralcycles.ThesesafetyissuescouldhinderthebroaderadoptionofEVsandbattery-basedenergystoragesolutions.While1.FP(lithiumferro-phosphate)andNMC(nickelmanganesecobalt)arebecomingstandardforelectricvehicleapplications,severaltechnologiesconcerningthechemistryofbatteriesarebeingexplored,suchascobalt-free(sodium-ion)andsolid-statebatteries,withalikelyaccelerationin2024.Theprimarydriverforthemarketofsodium-ionbatteriesistheincreaseddemandforenergystoragegeneratedthroughsolarandwind.MarketleadersinthisindustryareFaradion1.imited(UK),NGKInsulators1.td(Japan),Tiamat(France),HiNaBatteryTechnologyCo.1.td(China),andContemporaryAmperexTechnologyCo.1.imited(China).Thedevelopmentofsolid-statebatteriesrepresentsamajorshiftinbatterytechnology,primarilyforelectricvehicles,astheyhavehigherenergydensities(i.e.storagecapacity),forapricewhichwillbecomelowerthantraditionalbatteries.Theyalsoreducedependencyonmaterialssuchaslithium,nickel,cobalt,rare-earthminerals,andgraphite,whilepromisinglongerlifespansandmorerobustsafety.QuantumScape(USA)zToyota(Japan),SolidPower(USA),Samsung(South-Korea),and1.GChem(South-Korea)areamongtheleadersinthisrapidlyevolvingfield.Whyitmatters:Inabusinessworlddrivenbytheenergytransition,thefightagainstclimatechange,andorganizationsintransitiontoasustainableeconomy,theseemergingdevelopmentsmayofferapathwaytowardsbettertradeoffsforthebatteryindustryandmoresustainableuseofmaterials.Things/projectstowatchfor:Whenlookingatthistechnologymegatrend,twocategoriesofplayersneedtobedistinguished:theunicornsandthestartups.Amongsttheunicorns,well-establishedcompaniescanberecognizedsuchasTesla(USA)zacceleratingthetransitiontoEVsandenergystorage,Northvolt(Sweden),manufacturing1.i-ionforEVs,Verkor(France),manufacturinglow-carbonbatteriesforEVszQuantumScape(USA),developssolid-statebatterytechnologytoincreasetherangeofEV's,Freyr(Norway),manufacturingsemisolid1.i-ionbatteriesforenergystorageandEVszSila(USA),providerofnano-compositesiliconanodethatpowersbreakthroughenergydensityinEVbatteries,andSESAl(USA)7manufacturingofscalable,dense,smartandlight1.i-Metalbatteriesforelectrictransportationonlandandinair.Sincebatterytechnologyexhibitsgenuinequantummechanicalandquantumchemicalbehavior,itisaverynaturalareatoapplyquantumcomputing.Severalgovernment-fundedandpromisingprojectsareongoing,andalargeamountofstartupactivitycanbewitnessede.g.IonQ(USA),psiQuantum(USA),Phasecraft(UK).SPACETECH-ADDRESSINGTHEEARTHzSCHA1.1.ENGESFROMOUTERSPACEIn2024,humanitywillbepreparingtoreturntothemoon.TheNASAArtemisIlMission,scheduledforaNovember2024launch,willsendastronautsintolunarorbitforthefirsttimesincethe1972Apollo17mission.ThislandmarkeventisasymbolofabroaderindustrytrendthatcanbedescribedasanewSpaceAge.ThisrenewedinterestinspacetechnologiesisInthefieldofspacecommunicationsandnetworks,wecanseeasurgeofexcitingprojectssuchasthedevelopmentoflasercommunicationsystems,hybridgroundandspacenetworks,orevenseamless5Gconnectivityfromspace.InEarthObservation,wecanlookforwardtofascinatingprojectstoadvanceourunderstandingoftheplanetanditschangingenvironment.Inparticular,theincreasingintegrationofAlinEarthObservationisofferingmoreefficientdataprocessing,enhancedanalyticalCapabilitieszandthepotentialfornewinsightsintoEarth'senvironmentalandclimate-relatedchallenges.drivenbytwomajorshiftsintheindustry.Firstly,andcontrarytotheSpaceRaceofthe'60sand'70s,itisdrivennotjustbygovernmentagencies,butalsobyamultitudeofprivateactorszfromstartupstoSimultaneously,theInternetofThingsisexpandingintoanentirelynewdimensionwiththedevelopmentofsatelliteconstellations.CubeSats,ChipSats,andothernanosatellitesarebeinglaunchedintheirthousands,eachonboardingitsownarrayofminiaturesensorsandcommunicationsequipment.Anexponentiallycorporations.Secondly,asidefromthemajorgrowingvolumeofdataisbeingcollectedandsharedforscientificmissionsheadedtotheMoonOraVarietyMarszthisraceismdstlyheadedfor1.owEarthOrbit(1.EO)zinthepursuitofcheaperusecasesandmoreperformance.Allinallzthe