欢迎来到课桌文档! | 帮助中心 课桌文档-建筑工程资料库
课桌文档
全部分类
  • 党建之窗>
  • 感悟体会>
  • 百家争鸣>
  • 教育整顿>
  • 文笔提升>
  • 热门分类>
  • 计划总结>
  • 致辞演讲>
  • 在线阅读>
  • ImageVerifierCode 换一换
    首页 课桌文档 > 资源分类 > DOC文档下载  

    最新人版八级数学上册第11_13章知识点整理.doc

    • 资源ID:14293       资源大小:112KB        全文页数:5页
    • 资源格式: DOC        下载积分:10金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要10金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    最新人版八级数学上册第11_13章知识点整理.doc

    .第十一章 三角形 知识点整理1、三角形的边<1>三角形任意两边之和大于第三边,三角形任意两边之差小于第三边。<2>三角形第三边的取值范围: |另两边之差| < 第三边 < 另两边之和2、三角形的高、中线、角平分线(1) 的高、的中线、的角平分线都是线段(2) 交点情况a.锐角三角形三条高的交点位于的内部;直角三角形三条高的交点位于直角三角形的直角顶点;钝角三角形三条高所在的直线的交点位于三角形的外部。b.的三条中线的交点位于的内部。三角形三条中线的交点叫做三角形的重心。三角形的中线把三角形分成面积相等的两个三角形。c.的三条角平分线交于一点,交点位于的内部。3、三角形的内角和定理:三角形的内角和等于180°4、三角形的外角性质:1、三角形的外角等于和它不相邻的两内角的和;2、三角形的外角大于和它不相邻的任意一个内角。5、三角形的三个外角和等于360°6、直角三角形的性质:直角三角形的两个锐角互余。7、直角三角形的判定:有两个角互余的三角形是直角三角形。8、n边形的内角和等于n-2×180°9、从n边形的一个顶点出发,有n-3条对角线,它们将n边形分为n-2个三角形,n边形总共有条对角线,。10.多边形的外角和等于360°11、三角形的分类a.按边分: 三角形b.按角分:1锐角三角形三个角都是锐角; 2直角三角形有一个角为直角; 3钝角三角形有一个角为钝角。第十二章 全等三角形 知识点小结一、本章的基本知识点全等三角形的性质:全等三角形的对应边相等,全等三角形的对应角相等。全等三角形的判定方法:一般三角形的判定方法:边角边SAS、角边角ASA、角角边AAS、边边边SSS直角三角形的判定方法:除了以上四种方法之外,还有斜边、直角边HL角平分线的性质:角的平分线上的点到角的两边的距离相等。符号语言:OP平分MON12,PAOM,PBON,PAPB角平分线的判定方法:角的内部到角的两边的距离相等的点在角的平分线上。符号语言:PAOM,PBON,PAPB12OP平分MON证明文字命题的一般步骤:证明文字命题,第一是要根据题意画出合适的图形;第二要根据题意和图形写出已知和求证;第三是写出证明过程。二、本章应注意的问题1、全等三角形的证明过程:找已知条件,做标记;找隐藏条件,如对顶角、等腰三角形、平行四边形、公共边、公共角等;DCABDCABAEDCB变形变形对照定理,看看还是否需要构造条件。2、全等三角形的证明思路:ABCDEF变形ABDFECCBAD变形3、全等三角形证明中常见图形:DACEB变形GDCBFEAABCED变形4、全等三角形证明时特殊的辅助线:在本章中,作辅助线的目的就是为了构造全等三角形,有几种特殊的辅助线需要注意:涉及三角形的中线问题时,常采用延长中线一倍的方法,构造出一对全等三角形;涉及角平分线问题时,经过角平分线上一点向两边作垂线,可以得到一对全等三角形;证明两条线段的和等于第三条线段时,用"截长补短"法可以构造一对全等三角形三、全等三角形习题精选一、五大判定定理记忆与应用1下列命题中正确的是 A全等三角形的高相等 B全等三角形的中线相等 C全等三角形的角平分线相等D全等三角形对应角的平分线相等2.下列说法正确的是 A.周长相等的两个三角形全等 B.有两边和其中一边的对角对应相等的两个三角形全等C.面积相等的两个三角形全等 D.有两角和其中一角的对边对应相等的两个三角形全等3.如图 , 在AOB的两边上,AO=BO , 在AO和BO上截取CO=DO , 连结AD和BC交于点P , 则AODBOC理由是 A.ASA B.SAS C.AAS D.SSS4.如果两个三角形中两条边和其中一边上的高对应相等,那么这两个三角形的第三条边所对的角的关系是 A. 相等 B. 不相等 C. 互余或相等 D. 互补或相等2.重点图形的识1、如图,已知1=2,3=4,EC=AD,求证:AB=BE,BC=DB。2. 如图,1=2,C=D,AC、BD交于E点,求证:CE=DE3. 如图:AB=AC,EB=EC,AE的延长线交BC于D。求证:BD=DC。A CBED 3.重点证明过程的书写1.如图,AE=AC, AD=AB,EAC=DAB,求证: EDCA2. 如图,已知AB=AD,AC平分DAB,求证:。3.已知:如图, FB=CE , ABED , ACFD, F、C在直线BE上求证:AB=DE , AC=DF第十三章 轴对称知识点一轴对称和轴对称图形1、有一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点两个图形关于直线对称也叫做轴对称2、轴对称图形:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形。这条直线就是它的对称轴。对称轴必须是直线3、对称点:折叠后重合的点是对应点,叫做对称点。4、轴对称图形的性质:如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。类似的,轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。连接任意一对对应点的线段被对称轴垂直平分 轴对称图形上对应线段相等、对应角相等。5画一图形关于某条直线的轴对称图形的步骤:找到关键点,画出关键点的对应点,按照原图顺序依次连接各点。二、轴对称与轴对称图形的区别和联系区别:轴对称是指两个图形之间的形状与位置关系,成轴对称的两个图形是全等形;轴对称图形是一个具有特殊形状的图形,把一个轴对称图形沿对称轴分成两个图形,这两个图形是全等形,并且成轴对称联系:1:都是折叠重合 2;如果把成轴对称的两个图形看成一个图形那么他就是轴对称图形,反之亦然。三线段的垂直平分线1经过线段的中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线或线段的中垂线2线段的垂直平分线上的点与这条线段两个端点的距离相等;反过来,与一条线段两个端点距离相等的点在这条线段的垂直平分线上证明是必须有两个点因此线段的垂直平分线可以看成与线段两个端点距离相等的所有点的集合四用坐标表示轴对称1、 点x,y关于x轴对称的点的坐标为x,-y;2、 点x,y关于y轴对称的点的坐标为-x,y;3、 点x,y关于原点对称的点的坐标为-x,-y。关于谁谁不变,关于原点都相反.<五>关于平行于坐标轴的直线对称点Px,y关于直线xm对称的点的坐标是2mx,y;点Px,y关于直线yn对称的点的坐标是x,2ny;<六等腰三角形1、 等腰三角形性质:性质1:等腰三角形的两个底角相等简写成"等边对等角"性质2:等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合。三线合一2、 等腰三角形的判定:如果一个三角形有两个角相等,那么这两个角所对的边也相等简写成"等角对等边"<七>等边三角形定义:三条边都相等的三角形,叫等边三角形。它是特殊的等腰三角形。1、 性质和判定:(1) 等边三角形的三个内角都相等,并且每一个角都等于60º。(2) 三个角都相等的三角形是等边三角形。(3) 有一个角是60º的等腰三角形是等边三角形。(4) 在直角三角形中,如果一个锐角等于30º,那么它所对的直角边等于斜边的一半。八其他结论1三角形三个内角的平分线交于一点,并且这一点到三边的距离相等。2三角形三个边的中垂线交于一点,并且这一点到三个顶点的距离相等。 作图题专练1如图:已知AOB和C、D两点,求作一点P,使PC=PD,且P到AOB两边的距离相等AC··DOB2已知:A、B两点在直线l的同侧,试分别画出符合条件的点M1如图,在l上求作一点M,使得 AMBM 最小;作法:2如图,在l上求作一点M,使得AMBM最大作法:3如图,在l上求作一点M,使得AMBM最小4如果两点位于直线异侧,请你去解决上述问题变式练习1、如图,已知直线MN与MN同侧两点A、B求作:点P,使点P在MN上,且APMBPN2如图点A、B、C在直线l的同侧,在直线l上,求作一点P,使得四边形APBC的周长最小;3.如图已知线段a,点A、B在直线l的同侧,在直线l上,求作两点P、Q 点P在点Q的左侧且PQa,四边形APQB的周长最小4、已知:如图点M在锐角AOB的内部,在OA边上求作一点P,在OB边上求作一点Q,使得PMQ的周长最小;5、已知:如图314,点M在锐角AOB的内部,在OB边上求作一点P,使得点P到点M的距离与点P到OA边的距离之和最小6、一条河两岸有A、B两地,要设计一条道路,并在河上垂直于河岸架一座桥,用来连接A、B两地,问路线怎样走,桥应架在什么地方,才能使从A到B所走的路线最短?5 / 5

    注意事项

    本文(最新人版八级数学上册第11_13章知识点整理.doc)为本站会员(夺命阿水)主动上传,课桌文档仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知课桌文档(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-1

    经营许可证:宁B2-20210002

    宁公网安备 64010402000986号

    课桌文档
    收起
    展开