欢迎来到课桌文档! | 帮助中心 课桌文档-建筑工程资料库
课桌文档
全部分类
  • 党建之窗>
  • 感悟体会>
  • 百家争鸣>
  • 教育整顿>
  • 文笔提升>
  • 热门分类>
  • 计划总结>
  • 致辞演讲>
  • 在线阅读>
  • ImageVerifierCode 换一换
    首页 课桌文档 > 资源分类 > DOC文档下载  

    电磁场和电磁波第三版课后答案及解析第3章.doc

    • 资源ID:14569       资源大小:871KB        全文页数:14页
    • 资源格式: DOC        下载积分:10金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要10金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    电磁场和电磁波第三版课后答案及解析第3章.doc

    .第三章习题解答3.1真空中半径为的一个球面,球的两极点处分别设置点电荷和,试计算球赤道平面上电通密度的通量<如题3.1图所示>。赤道平面题3.1 图解由点电荷和共同产生的电通密度为则球赤道平面上电通密度的通量3.2 1911年卢瑟福在实验中使用的是半径为的球体原子模型,其球体内均匀分布有总电荷量为的电子云,在球心有一正电荷是原子序数,是质子电荷量,通过实验得到球体内的电通量密度表达式为,试证明之。解位于球心的正电荷球体内产生的电通量密度为原子内电子云的电荷体密度为题3. 3图电子云在原子内产生的电通量密度则为故原子内总的电通量密度为3.3电荷均匀分布于两圆柱面间的区域中,体密度为, 两圆柱面半径分别为和,轴线相距为,如题3.3图所示。求空间各部分的电场。解由于两圆柱面间的电荷不是轴对称分布,不能直接用高斯定律求解。但可把半径为的小圆柱面内看作同时具有体密度分别为的两种电荷分布,这样在半径为的整个圆柱体内具有体密度为的均匀电荷分布,而在半径为的整个圆柱体内则具有体密度为的均匀电荷分布,如题3.3图所示。空间任一点的电场是这两种电荷所产生的电场的叠加。在区域中,由高斯定律,可求得大、小圆柱中的正、负电荷在点产生的电场分别为题3. 3图点处总的电场为在且区域中,同理可求得大、小圆柱中的正、负电荷在点产生的电场分别为点处总的电场为在的空腔区域中,大、小圆柱中的正、负电荷在点产生的电场分别为点处总的电场为3.4半径为的球中充满密度的体电荷,已知电位移分布为其中为常数,试求电荷密度。解:由,有故在区域在区域3.5 一个半径为薄导体球壳内表面涂覆了一薄层绝缘膜,球内充满总电荷量为为的体电荷,球壳上又另充有电荷量。已知球内部的电场为,设球内介质为真空。计算:1 球内的电荷分布;2球壳外表面的电荷面密度。解1 由高斯定律的微分形式可求得球内的电荷体密度为2球体内的总电量为球内电荷不仅在球壳内表面上感应电荷,而且在球壳外表面上还要感应电荷,所以球壳外表面上的总电荷为2,故球壳外表面上的电荷面密度为3.6两个无限长的同轴圆柱半径分别为和,圆柱表面分别带有密度为和的面电荷。1计算各处的电位移;2欲使区域内,则和应具有什么关系?解1由高斯定理,当时,有当时,有,则当时,有,则2令,则得到3.7计算在电场强度的电场中把带电量为的点电荷从点移到点时电场所做的功:1沿曲线;2沿连接该两点的直线。解12连接点到点直线方程为即故3.8长度为的细导线带有均匀电荷,其电荷线密度为。1计算线电荷平分面上任意点的电位;2利用直接积分法计算线电荷平分面上任意点的电场,并用核对。解1建立如题3.8图所示坐标系。根据电位的积分表达式,线电荷平分面上任意点的电位为题3.8图 2根据对称性,可得两个对称线电荷元在点的电场为故长为的线电荷在点的电场为由求,有3.9 已知无限长均匀线电荷的电场,试用定义式求其电位函数。其中为电位参考点。解由于是无限长的线电荷,不能将选为无穷远点。3.10 一点电荷位于,另一点电荷位于,求空间的零电位面。解两个点电荷和在空间产生的电位令,则有即故得由此可见,零电位面是一个以点为球心、为半径的球面。3.11证明习题3.2的电位表达式为解位于球心的正电荷在原子外产生的电通量密度为电子云在原子外产生的电通量密度则为所以原子外的电场为零。故原子内电位为3.12电场中有一半径为的圆柱体,已知柱内外的电位函数分别为1求圆柱内、外的电场强度;2这个圆柱是什么材料制成的?表面有电荷分布吗?试求之。解1由,可得到时,时,2该圆柱体为等位体,所以是由导体制成的,其表面有电荷分布,电荷面密度为3.13 验证下列标量函数在它们各自的坐标系中满足1其中;2圆柱坐标;3圆柱坐标;4球坐标;5球坐标。解1在直角坐标系中而故2在圆柱坐标系中而故3故4在球坐标系中而故5 故3.14已知的空间中没有电荷,下列几个函数中哪些是可能的电位的解?1;2;34。解1所以函数不是空间中的电位的解;2 所以函数是空间中可能的电位的解;3 所以函数不是空间中的电位的解;4 所以函数不是空间中的电位的解。3.15 中心位于原点,边长为的电介质立方体的极化强度矢量为。1计算面束缚电荷密度和体束缚电荷密度;2证明总的束缚电荷为零。解1 同理2 3.16 一半径为的介质球,介电常数为,其内均匀分布自由电荷,证明中心点的电位为解由,可得到时,即,时,即,故中心点的电位为3.17一个半径为的介质球,介电常数为,球内的极化强度,其中为一常数。1 计算束缚电荷体密度和面密度;2 计算自由电荷密度;3计算球内、外的电场和电位分布。解1 介质球内的束缚电荷体密度为在的球面上,束缚电荷面密度为2由于,所以即由此可得到介质球内的自由电荷体密度为总的自由电荷量3介质球内、外的电场强度分别为介质球内、外的电位分别为3.181证明不均匀电介质在没有自由电荷密度时可能存在束缚电荷体密度;2导出束缚电荷密度的表达式。解1由,得束缚电荷体密度为在介质内没有自由电荷密度时,则有由于,有所以由此可见,当电介质不均匀时,可能不为零,故在不均匀电介质中可能存在束缚电荷体密度。2束缚电荷密度的表达式为3.19两种电介质的相对介电常数分别为=2和=3,其分界面为=0平面。如果已知介质1中的电场的那么对于介质2中的和,我们可得到什么结果?能否求出介质2中任意点的和?解设在介质2中在处,由和,可得于是得到故得到介质2中的和在处的表达式分别为不能求出介质2中任意点的和。由于是非均匀场,介质中任意点的电场与边界面上的电场是不相同的。3.20 电场中一半径为、介电常数为的介质球,已知球内、外的电位函数分别为验证球表面的边界条件,并计算球表面的束缚电荷密度。解在球表面上故有,可见和满足球表面上的边界条件。球表面的束缚电荷密度为3.21平行板电容器的长、宽分别为和,极板间距离为。电容器的一半厚度<>用介电常数为的电介质填充,如题3.21图所示。(1) <1>板上外加电压,求板上的自由电荷面密度、束缚电荷;(2) <2>若已知板上的自由电荷总量为,求此时极板间电压和束缚电荷;(3) <3>求电容器的电容量。解1 设介质中的电场为,空气中的电场为。由,有 题 3.21图又由于由以上两式解得,故下极板的自由电荷面密度为上极板的自由电荷面密度为电介质中的极化强度故下表面上的束缚电荷面密度为上表面上的束缚电荷面密度为题3.22图 2由得到故3电容器的电容为3.22 厚度为、介电常数为的无限大介质板,放置于均匀电场中,板与成角,如题3.22图所示。求:1使的值;2介质板两表面的极化电荷密度。解1根据静电场的边界条件,在介质板的表面上有由此得到2设介质板中的电场为,根据分界面上的边界条件,有,即所以介质板左表面的束缚电荷面密度介质板右表面的束缚电荷面密度3.23 在介电常数为的无限大均匀介质中,开有如下的空腔,求各腔中的和:1平行于的针形空腔;2底面垂直于的薄盘形空腔;3小球形空腔见第四章4.14题。解1对于平行于的针形空腔,根据边界条件,在空腔的侧面上,有。故在针形空腔中,2对于底面垂直于的薄盘形空腔,根据边界条件,在空腔的底面上,有。故在薄盘形空腔中,3.24 在面积为的平行板电容器内填充介电常数作线性变化的介质,从一极板处的一直变化到另一极板处的,试求电容量。解由题意可知,介质的介电常数为设平行板电容器的极板上带电量分别为,由高斯定理可得所以,两极板的电位差故电容量为3.25 一体密度为的质子束,束内的电荷均匀分布,束直径为,束外没有电荷分布,试计算质子束内部和外部的径向电场强度。解在质子束内部,由高斯定理可得故在质子束外部,有故3.26 考虑一块电导率不为零的电介质,设其介质特性和导电特性都是不均匀的。证明当介质中有恒定电流时,体积内将出现自由电荷,体密度为。试问有没有束缚体电荷?若有则进一步求出。解对于恒定电流,有,故得到介质中有束缚体电荷,且3.27填充有两层介质的同轴电缆,内导体半径为,外导体内半径为,介质的分界面半径为。两层介质的介电常数为和,电导率为和。设内导体的电压为,外导体接地。求:1两导体之间的电流密度和电场强度分布;2介质分界面上的自由电荷面密度;3同轴线单位长度的电容及漏电阻。解1设同轴电缆中单位长度的径向电流为,则由,可得电流密度介质中的电场由于于是得到故两种介质中的电流密度和电场强度分别为2由可得,介质1内表面的电荷面密度为介质2外表面的电荷面密度为两种介质分界面上的电荷面密度为3同轴线单位长度的漏电阻为由静电比拟,可得同轴线单位长度的电容为3.28半径为和的两个同心的理想导体球面间充满了介电常数为、电导率为的导电媒质<为常数>。若内导体球面的电位为,外导体球面接地。试求:1媒质中的电荷分布;2两个理想导体球面间的电阻。解设由内导体流向外导体的电流为,由于电流密度成球对称分布,所以电场强度由两导体间的电压可得到所以媒质中的电荷体密度为媒质内、外表面上的电荷面密度分别为2两理想导体球面间的电阻3.29电导率为的无界均匀电介质内,有两个半径分别为和的理想导体小球,两球之间的距离为,试求两小导体球面间的电阻。解此题可采用静电比拟的方法求解。假设两小球分别带电荷和,由于两球间的距离、,可近似认为小球上的电荷均匀分布在球面上。由电荷和的电位叠加求出两小球表面的电位差,即可求得两小导体球面间的电容,再由静电比拟求出两小导体球面间的电阻。设两小球分别带电荷和,由于、,可得到两小球表面的电位为所以两小导体球面间的电容为由静电比拟,得到两小导体球面间的电导为故两个小导体球面间的电阻为3.30在一块厚度的导电板上,由两个半径为和的圆弧和夹角为的两半径割出的一块扇形体,如题3.30图所示。求:1沿厚度方向的电阻;2两圆弧面之间的电阻;沿方向的两电极的电阻。设导电板的电导率为。解1设沿厚度方向的两电极的电压为,则有题3.30图故得到沿厚度方向的电阻为2设内外两圆弧面电极之间的电流为,则故得到两圆弧面之间的电阻为3设沿方向的两电极的电压为,则有由于与无关,所以得到故得到沿方向的电阻为3.31圆柱形电容器外导体内半径为,内导体半径为。当外加电压固定时,在一定的条件下,求使电容器中的最大电场强度取极小值的内导体半径的值和这个的值。解设内导体单位长度带电荷为,由高斯定理可求得圆柱形电容器中的电场强度为由内外导体间的电压得到由此得到圆柱形电容器中的电场强度与电压的关系式在圆柱形电容器中,处的电场强度最大令对的导数为零,即由此得到故有3.32 证明:同轴线单位长度的静电储能等于。为单位长度上的电荷量,为单位长度上的电容。解由高斯定理可求得圆柱形电容器中的电场强度为内外导体间的电压为则同轴线单位长度的电容为同轴线单位长度的静电储能为3.33如题3.33图所示,一半径为、带电量的导体球,其球心位于两种介质的分界面上,此两种介质的电容率分别为和,分界面为无限大平面。求:1导体球的电容;2总的静电能量。解1由于电场沿径向分布,根据边界条件,在两种介质的分界面上,故有。由于、,所以。由高斯定理,得到即题 3.33图所以导体球的电位故导体球的电容2总的静电能量为3.34把一带电量、半径为的导体球切成两半,求两半球之间的电场力。解先利用虚位移法求出导体球表面上单位面积的电荷受到的静电力,然后在半球面上对积分,求出两半球之间的电场力。导体球的电容为故静电能量为根据虚位移法,导体球表面上单位面积的电荷受到的静电力方向沿导体球表面的外法向,即这里在半球面上对积分,即得到两半球之间的静电力为3.35如题3.35图所示,两平行的金属板,板间距离为,竖直地插入在电容率为的液体中,两板间加电压,证明液面升高其中为液体的质量密度。解设金属板的宽度为、高度为。当金属板间的液面升高为时,其电容为题3.35图 金属板间的静电能量为液体受到竖直向上的静电力为而液体所受重力与相平衡,即故得到液面上升的高度3.36可变空气电容器,当动片由至电容量由至直线地变化,当动片为角时,求作用于动片上的力矩。设动片与定片间的电压为。解当动片为角时,电容器的电容为此时电容器中的静电能量为作用于动片上的力矩为3.37平行板电容器的电容是,其中是板的面积,为间距,忽略边缘效应。题3.37图 1如果把一块厚度为的不带电金属插入两极板之间,但不与两极接触,如题3.37图所示。则在原电容器电压一定的条件下,电容器的能量如何变化?电容量如何变化?2如果在电荷一定的条件下,将一块横截面为、介电常数为的电介质片插入电容器<与电容器极板面积基本上垂直地插入,如题3.37图所示,则电容器的能量如何变化?电容量又如何变化?解1在电压一定的条件下,未插入金属板前,极板间的电场为电容为静电能量为当插入金属板后,电容器中的电场为此时静电能量和电容分别为故电容器的电容及能量的改变量分别为2在电荷一定的条件下,未插入电介质板前,极板间的电场为静电能量为当插入电介质板后,由介质分界面上的边界条件,有题3.37图 再由高斯定理可得于是得到极板间的电场为两极板间的电位差位此时的静电能量为其电容为故电容器的电容及能量的改变量分别为3.38如果不引入电位函数,静电问题也可以通过直接求解法求解的微分方程而得解决。1证明:有源区的微分方程为,;2证明:的解是解1由,可得,即又故得到2在直角坐标系中的三个分量方程为,其解分别为故3.39证明:解由于,所以由题3.38<2>可知故14 / 14

    注意事项

    本文(电磁场和电磁波第三版课后答案及解析第3章.doc)为本站会员(夺命阿水)主动上传,课桌文档仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知课桌文档(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-1

    经营许可证:宁B2-20210002

    宁公网安备 64010402000986号

    课桌文档
    收起
    展开