欢迎来到课桌文档! | 帮助中心 课桌文档-建筑工程资料库
课桌文档
全部分类
  • 党建之窗>
  • 感悟体会>
  • 百家争鸣>
  • 教育整顿>
  • 文笔提升>
  • 热门分类>
  • 计划总结>
  • 致辞演讲>
  • 在线阅读>
  • ImageVerifierCode 换一换
    首页 课桌文档 > 资源分类 > DOCX文档下载  

    Markov-chains-马尔科夫链.docx

    • 资源ID:1467846       资源大小:150.30KB        全文页数:56页
    • 资源格式: DOCX        下载积分:5金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要5金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    Markov-chains-马尔科夫链.docx

    MarkovChains4.1 INTRODUCTIONANDEXAMP1.ESConsiderastochasticprocessXn,n=0,1,2,.thattakesonafiniteorcountablenumberofpossiblevalues.Unlessotherwisementioned,thissetofpossiblewillbedenotedbythesetofnonnegativeintegers0,1,2,.IfX,=i,thentheprocessissaidtobeinstateiattimen.Wesupposethatwhenevertheprocessisinstatei,thereisafixedprobabilityP11thatitwillnextbeinstatej.Thatis,wesupposethat0PX"1=jXnl=i|iXl=iJ.X=i=Pijforallstatesi0,i,.in-,i,jandalln20.SuchastochasticprocessisknownasaMarkovchain.Equation()maybeinterpretedasstatingthat,foraMarkovchain,theconditionaldistributionofanyfuturestateX11.1giventhepaststatesXo,X.,Xll-andthepresentstateX11zisindependentofthepaststatesanddependsonlyonthepresentstate.ThisiscalledtheMarkovianproperty.Theva1uePiJrepresentstheprobabilitythattheprocesswill,wheninstatei,nextmakeatransitionintostatej.Sinceprobabilitiesarenonnegativeandsincetheprocessmustmakeatransitionintosomestate,WehavethataPi声O,i,j2O:Z4=l,i=o,1/?./.:1.etPdenotethematrixofonc-steptransitionprobabilitiesPij,sothat%0-%,1*EXAMP1.E4.1(八)TheM/G/lQueue.SupposethatcustomersarriveataservicecenterinaccordancewithaPoissonprocesswithrate.Thereisasingleserverandthosearrivalsfindingtheserverfreegoimmediatelyintoservice;allotherswaitinlineuntiltheirserviceturn.TheservicetimesofsuccessivecustomersareassumedtobeindependentrandomvariableshavingacommondistributionG:andtheyarealsoassumedtobeindependentofthearrivalprocess.TheabovesystemiscalledtheM/G/lqueueingsystem.TheletterMstandsforthefactthattheinterarrivaldistributionofcustomersisexponential,Gfortheservicedistribution;thenumber1indicatesthatthereisasingleserver.IfweletX(t)denotethenumberofcustomersinthesystematt,then;.X(t)11>0wouldnotpossesstheMarkovianpropertythattheconditionaldistributionofthefuturedependsonyonthepresentandnotonthepast.Forifweknowthenumberinthesystemattimet,then,topredictfuturebehavior,whereaswewouldnotcarehowmuchtimehadelapsedsincethelastarrival(sincethearrivalprocessismemory1ess),wewouldcarehowlongthepersoninservicehadalreadybeenthere(sincetheservicedistributionGisarbitraryandthereforenotmemoryless).Asameansofgettingaroundtheabovedi1emmaletusonlylookatthesystematmomentswhencustomersdepart.Thatis,letXndenotethenumberofcustomersleftbehindbythenthdeparture,n1.Also,letYndenotethenumberofcustomersarrivingduringtheserviceperiodofthe(n+l)stcustomer.WhenXn>0,thenthdepartureleavesbehindXncustomers-ofwhichoneentersserviceandtheotherXn-Iwaitinline.Hence,atthenextdeparturethesystemwillcontaintheXn-Icustomersthatwereinlineinadditiontoanyarrivalsduringtheservicetimeofthe(n+l)stcustomer.SinceasimiIarargumentholdswhenX,=0,WeseethatO)U=X.T+ZM'>°1匕if×,=0SinceYh,nN1,representthenumberofarrivalsinnonoverlappingserviceintervals,itfollows,thearrivalprocessbeingBoissonprocess,thattheyareindependentandOPYn=j=,e'it-dG(x).j=0,1Form(4,1.2)and()tfollowsthatX.n=i,2,.)isaMarkovchainwithtransitionprobabiHtiesgivenbyPll=e山邛dG(x).j0JP,*P11=OotherwiseSupposethatcustomersEXAMP1.E4.1(B)TheM/G/lQueue.arriveatasingle-servercenterinaccordancewithanarbitraryrenewalprocesshavinginterarrivaldistributionG.SupposefurtherthattheservicedistributionisexponentialwithrateKIfweletX11denotethenumberofcustomersinthesystemasseenbythentharrival,itiseasytoseethattheprocessX11,n21isaMarkovchain.TocomputethetransitionprobabilitiesPijforthisMarkovchain,letusfirstnotethat,aslongastherearecustomerstobeserved,thenumberofservicesinanylengthoftimetisaPoissonrandomvariablewithmeant.Thisistruesincethetimebetweensuccessiveservicesisexponentialand,asweknow,thisimpliesthatnumberofservicesthusconstitutesaPoissonprocess.Therefore,P1.i.券dG(r),i0Whichfollowssinceifanarrivalfindsiinthesystem,thenthenextarrivalwi11findi+1minusthenumbersserved,andtheprobabilitythatjwillbeservediseasilyseen(byconditioningonthetimebetweenthesuccessivearrivals)toequaltheright-handsideoftheabove.TheformulaforP10islittledifferent(itistheprobabilitythatatleasti+1PoissoneventsoccurinarandomlengthoftimehavingdistributionG)andthusisgivenbyP-fe-G(O,i0RemarkThereadershouldnotethatintheprevioustwoexamplesWewereabletodiscoveranembeddedMarkowchainbylookingattheprocessonlyatcertaintimepoints,andbychoosingthesetimepointssoastoexploitthelackofmemoryoftheexponentialdistribution.Thisisoftenafruitfulapproachforprocessesinwhichtheexponentialdistributionispresent.EXMP1.E4.1(C)SuasofIndependent,IdenticallyDistributedRandoavariables.TheGeneralRandomWalk.1.etXi,i1,beindependentandidenticallydistributedwithP(Xi=j)=aj,j=0,±1,.IfweletSo=OandS,二£x,r-lThenS11,n0isaMarkovchainforwhichFlj=aj-Sn,n0:iscalledthegeneralrandomwalkandwi11bestudiedinchapter7.EXAMP1.E4.1(D)TheAbsolutevalueoftheSimpleRandcmWallk.TherandomwalkSn,n>l),whereS11=,Xi.issaidtobeasimplerandomWaIkifforsomep,0<p<l,P(X1=I)=P,P(Xi=-l)=q三l-p.Thusinthesimplerandomwalktheprocessalwayseithergoesuponestep(withprobabiIityp)ordownonestep(withprobabilityq).NowconsiderSn,theabsolutevalueofthesimplerandomwalk.TheprocessIS1J,n11measuresateachtimeunittheabsolutedistanceofthesimplerandomwalkfromtheorigin.SomewhatsurprisinglySr,IisitselfaMarkovchain.ToprovethiswewillfirstshowthatifSn=i,thennomatterwhatitspreviousvaluestheprobabi1itythatS11equalsi(asoppossedto-i)isp,/(pi+qj).PropossissitionIflSn.nlisasimplerandomwalk,thenPsn=isj=HSM=TP+qProofIfweletio=0anddefinej=maxkA)kn:it=O)then,sinceweknowtheactualofSl,itisclearthatPSn=小J=i,S=如,=ij=Ps11=s=".品|=如同=0NowtherearetwopossiblevaluesofthesequenceSi,.,SnforwhichSiI=i,.,S=iThefirstofwhichresultsinS=andhasprobabilityU-JIir-itp-,2qTIAndthesecondresultsinS11=-iandhasprobability"-JI-i<p-3qHence央nJ,-1.PS"=iS=AlSIt-J=fn-IStl=l=.,1.ij.:u;Pr'q2工+广"(r'-PP'+andthepropositionisprovenFrompropositionS=+/or-/thatitfollowsuponconditioningonwhetherP<IH+Ikl=4sM,S=Ps,“=i+1|S«="帚Hence,ISJ>1)isaMarkovchainWithtransitionrobabiIitiesJI""+/”十PP'+">0,P.=14.2CHAPMAN-KO1.MOGOROVEGUAT1.ONSANDC1.ASSSSISFICAT1.ONOFSTATESWehavealreadydefinedtheOne-StePtransitionprobabilitiesPifWenowdefinethe11-stcptransitionprobabilitiesP;tobetheprobabilitythataprocessinstateiwillbeinstateafternadditionaltransitions.Thatis,P/PXm=,nO,i,jO.OfcourseP;=P“.Thechapman-kolmogorovequationsprovidesamethodforcomputingthesen-steptransitionprobabiIities.TheseequationsareOPrB=£耳母foralln,m0,allij.IandareestablishedbyobservingthatPT=PXf=PX".e=Xil=MXO=iPX=/X.=k.X0=iPXn=A-X0=i=fp:iOIfweletP'11,denotethematrixofn-steptransitionprobabilities,thenequation()assertsthatPgM="Qprti)Wherethedotrepresentsmatrixmultiplicationhence,Plfll=peprt-=p.p.p<*-2)=pnAndthusP*'0maybecalculatedbymultiplyingthematrixPbyitselfntimes.Statejissaidtobeaccessiblefromstateiifforsomen0,/>0.Twostatesiandjaccessibletoeachotheraresaidtocommunicate,andWewritetcj.PropossltiwCommunicationisanequivalencerelation.Thatis:ii.(ii) if/,<->;,then(iii) ifijandJk,then/<k.ProofThefirsttwopartsfollowtriviallyfromthedefinitionofcommunication.Toprove(iii),supposethatigJandJ÷>k,thenthereexistsm,nsuchthatB,>0,P,">0.Hence,B=>F-OSimiIarly1wemayshowthereexistsansforwhichP2>0.Twostatesthatcommunicatearesaidtobeinthesameclass;andbyProposition,anytwoclassesareeitherdisjointoridentical.WesaythattheMarkovchainisirreducibleifonlyoneclass-thatis,ifallstatescommunicatewitheachother.StateiissaidtohaveperioddifP"=0whenevernisnotdivisiblebydanddisthegreatestintegerwithproperty.(IfP".=0foralln>0,thendefinetheperiodofitobeinfinite.)statewithperiod1issaidtobeaperiodic.1.et(7(r)denotetheperiodofi.Wenowthatperiodicityisaclassproperty.PROPOSITION4.2.2Ifi4j,thend(i)=d(j).Proof1.etmandnbesuchthatP"P">0,andsupposethatVrP,'1>0.ThenP丁Ep;耳耳0,wherethesecondinequalityfollows,forinstance,sincetheleft-handsiderepresentstheprobabiIitythatstartinginjthechainwillbebackinjafter/»+5+wtransitions,whereastheright-handsideistheprobabilityofthesameeventsubjecttothefurtherrestrictionthatthechainisinibothafterwandn+stransitions.Hence,d(7)dividesbothn+mandn+s+m;thus11+s+m-(n+m)=s,wheneverP*>0.Therefore,d(y)dividesd(i).AsimiIarargumentyieldsthatd(i)dividesd(j),thusd(i)=d(y)Foranystatesiandjdefine£3betheprobabilitythat,startingini,thefirsttransitionintojoccursattimen.Formally,/=0f=P(Xd=y,X1,A=IJ-IlXO=01.etfv=Then0denotestheprobabilityofevermakingatransitionintostatej,giventhattheprocessstartsini.(Notethatforij,4ispositiveif,andonlyif,jisaccessiblefromi).Statejissaidtoberecurrentiffh=1,andtransientotherwise.PROPOSITIONStatejisrecurrentif,andonlyif,EPi2lProofStatejisrecurrentif,withprobabilityl,aprocessstartingatjwilleventuallyreturn.However,bytheMarkovianpropertyitfollowsthattheprocessprobabilisticallyrestartsitselfuponreturningtoj.Hence,withprobabi1ity1,itwillreturnagaintoj.Repeatingthisargument.,weseethat,withprobabi)ity1,thenumberofvisitstojwillbeinfiniteandwillthushaveinfiniteexpectation.Ontheotherhand,supposejistransient,theneachtimetheprocessreturnstojthereisapositiveprobabi1ity1-f.thatitwillneveragainreturn;hencethenumberofvisitsisgeometricwithfinitemeanl(l-f1,).Bytheaboveargumentweseethatstatejisrecurrentif,andonlyif,EnumberofvisitstojX0=J=.But,letting1=PifX"=j'()OtherwiseItfollowsthatZAdenoteSthenumberofvisitstoj.sinced×.=j=n1=>=P;,1.n-OJA-»AfTheresultfollows.Theargumentleadingtotheabovepropositionisdoublyimportantforitalsoshowsthatatransientstatewillonlybevisitedafinitenumberoftimes(hencethenametransient).Thisleadstotheconclusionthatinafinite-stateMarkovchainnotallstatescanbetransient.Toseethis,supposethestatesare0,1,.,I/andsupposethattheyareal1transient.Thenafterafiniteamountoftime(sayaftertimeT0)state0willneverbevisited,andafteratime(sayTl)state1willneverbevisited,andafteratime(sayT,)state2willneverbevisited,andsoon.Thus,afterafinitetimeT=maxTo,Ti,Tjnostateswillbevisited.ButastheprocessmustbeinsomestateaftertimeT,wearriveatacontradiction,whichshowsthatatleastoneofthestatesmustberecurrent.Wewillusepropositiontoprovethatrecurrence,likeperiodicity,isaclassproperty.CorollaryIfiisProof1.etmrecurrentandij,thenjisrecurrent.andnbesuchthat">0,7*7>0.Nowforanys0prnppandthusZP1.p:耳Z8andtheresultfollowsfromPropositionExample4.2(八)THESIMP1.ERANDOMWA1.K.TheMarkovchainwhosestatespateisthesetofal1integersandhastransitionprobabilitiesEju=P=I-Aei=O,±lWhereO<p<I,iscalledthesimplerandomwalk.Oneinterpretationofthisprocessisthatitrepresentsthewanderingsofadrunkenmanashewalksalongastraightline,notheristhatitrepresentsthewinningsofagamblerwhooneachplayofthegameeitherwinsorlosesonedollar.Sinceal1statesclearlycommunicateitfollowsfromcorollarythattheyareeitheralltransientoral1recurrent.SoletusconsiderstateOandattempttodetermineifisfiniteorinfinite.Sinceitisimpossibletobeeven(usingthegamblingmodelinterpretation)afteranoddnumberofplays,wemust,ofcourse,havethat年r=0,n=l,2,.Ontheotherhand,thegamblerwouldbeevenafter2ntrialsif,andonlyif,hewonnoftheseandlostnofthese.seachplayofthegameresultsinawinprobabilitypandalosswithprobabiIity-p,thedesiredprobabiIityisthusthebinomialprobabilityP=2,P(1p)n=v(p(l-p)",n=l,2,3,n)"!!Byusinganapproximation,duetoStirling,whichassertsthatn!-n"""e-石,wherewesaythata“-b*whenIim(an/b)=1,weobtain2(4川-p)”Nowitiseasytoverifythatifa,-bnthen<,if,andonlyif,ZqCOO.Hence£用willconvergeif,andonlyif,y(4Hl-p)v-lJ乃“does.However,4p(l-p)lwithequalityholdingif,andonlyif,P=1/2.hence,£_G;=°°if,andonlyif,p=l2.Thus,thechainisrecurrentwhenp=l2andtransientifpl2When=1/2,theaboveprocessiscalledasysaaetricrandomwalk.Wecouldalsolookatsymmetricrandomwalksinmorethenonedimension.Forinstance,inthetwo-dimensionalsymmetricrandomwalktheleft,right,up,ordowneachhavingprobability.Similarly,inthreedimensionstheprocesswould,withprobability,samemethodasintheone-dimensionalrandomwalkitcanbeshownthatthetwo-dimensionalsymmetricrandomwalkisrecurrent,butallhigher-dimensionalrandomwalksarctransient.COroIIaryIfi<jandjisrecurrent,thenf=l.PrfSupposeXO=i,andletnbesuchthatPj>0.SaythatWemissopportunity1ifXj.Ifwemissopportunity1,then1.etT1denotethenexttimeweenteri(7isfinitewithprobability1bycorollary).Saythatwemissopportunity2ifX.uj.Ifopportunity2ismissed,let71denotethenexttimeweenteriandsaythatwemissopportunity3ifXr.,11j,andsoon.Itiseasytoseethattheopportunitynumberofthefirstsuccessisageometricrandomvariablewithmean1/:,andisthusfinitewithprobability1.Theresultfollowssinceibeingrecurrentimpiesthatthenumberofpotentialopportunitiesisinfinite.1.etjV.(r)denotethenumberoftransitionsintojbytimet.IfjisrecurrentandX0=j,thenastheprocessprobabilisticallystartsoverupontransitionsintoj,itfollowsthatt>isarenewalprocessWilhinterarrivaldistributionf;,nl.IfX0=i,/<->j,andjisrecurrent,then,y(r),tissadelayedrenewalprocesswithinitialinterarrivaldistributionf.4.31.imitTheoremsItiseasytoshowthatifstate;istransient,then<8foralli,11-lmeaningthat,startingini,theexpectednumberoftransitionsintostatejisfinite.Asaconsequenceitfollowsthatforjtransientoasn.1.etidenotetheexpectednumberoftransitionsneededtoreturntostatej.Thatis,ifjistransient£叫ifjisrecurrent>-Byinterpretingtransitionsintostatejasbeingrenewals,weobtainthefollowingtheoremfromPropositions,and3.4.1ofChapter3.THEOREMIfiandjconununicate.then:(i)PjlimjV;(O/=l/Atf|Xo=/=l.5)!吧£年7=1“hl(iii)Ifjisaperiodic,thenIimP"=,j.(iv)/,jhasperiod<l,henimP:=d.Ifstatejisrecurrent,thenwesaythatitispositiverecurrentif.<«>andnidirecurrentifJUy=.Ifweletitfollowsthatarecurrentstatejispositiverecurrentif%>oandnullrecurrentif",=o.Theproofofthefollowingpropositionisleftasanexercise.PROPOSITIONPositive(null)recurrenceisaclassproperly.Apositiverecurrent,aperiodicstateiscalledergodic.Beforepresentingatheoremthatshowshowtoobtainthelimitingprobabilitiesintheergodiccase,weneedthefollowingdefinition.DefinitionAprobabilitydistributionjp,oissaidtobestationeryfortheMarkovchainif与=S牝,OIftheprobabilitydistributionofxl,say,l=,x0=j,j()isaSlaIionarydistribution,thenHX1./=£尸必=X°=i'X"i=£44=P,r-0I-Oand.byinduction,OP'=J=力PX"X="PX="=*A=S/=O=OHence,iftheinitialprobabilitydistributionisthestationarydistribution,thenXnwillhavethesamedistributionforall.Infact,asxn,woisaMarkovchain,iteasilyfollowsfromthisthatforeachmo.xn.xxn,mwillhavethesamejointdistributionforeachn;inotherwords,x,11owillbeastationaryprocess.THEOREMAnirreducibleaperiodicMarkovchainbelongstooneofthefollowingtwoclasses:(i) Eitherthestatesarealltransientorallnullrecurrent;inthiscase,oas11foralli,jandthereexistsnoStationaiydistribution.(ii) Orelse,allstatesarepositiverecurrent,thatis,11j=Iim年>0Inthiscase,忆.j=o.2.isastationary'distributionandthereexistsnootherstat

    注意事项

    本文(Markov-chains-马尔科夫链.docx)为本站会员(夺命阿水)主动上传,课桌文档仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知课桌文档(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-1

    经营许可证:宁B2-20210002

    宁公网安备 64010402000986号

    课桌文档
    收起
    展开