欢迎来到课桌文档! | 帮助中心 课桌文档-建筑工程资料库
课桌文档
全部分类
  • 党建之窗>
  • 感悟体会>
  • 百家争鸣>
  • 教育整顿>
  • 文笔提升>
  • 热门分类>
  • 计划总结>
  • 致辞演讲>
  • 在线阅读>
  • ImageVerifierCode 换一换
    首页 课桌文档 > 资源分类 > DOCX文档下载  

    模型48 梯子最值与斜边中点模型(解析版).docx

    • 资源ID:1472681       资源大小:206.42KB        全文页数:21页
    • 资源格式: DOCX        下载积分:5金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要5金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    模型48 梯子最值与斜边中点模型(解析版).docx

    梯子最值与斜边中点模型【模型】撵子最值问慝,希有一条我段的禹个端点在生M*上滑动的波值模型【结论】做段AB的两端在坐播“上滑动,ZABC=90,AB的中点为Q,展接OQ,QCO,Q,C三点头级时,OC取得最大值【何证】如图在RtA()B中,点.Q是中点,OQ=;AB.在RtZsABC中,曲勾股定理得CQ=4QB>2+(CB)1=拈ABY+(Cfi)2.芾OC柒取科讹大信,则O,Q,C三总共戏,中OC=OQ+QC,即OC=;AB+,(;A8)2+(C8)21.bMl梯子模型的黑,美就是麻两个四形的公共边的中点作为桥梁例题精讲【例1.如图.已知,WOV=BAC=90',且点4在OM上运动.点B在ON上运动.若A8=8,AC=6,则OC的最大值为4÷213_.解:取AB的中点心连接CE.:.AE=4.a:.RtACC,由勾股定理得.cz=AC2+AE2=42+62=2任1VZO=90j,点£为AB的中点,.OE=4-B=4,2VOCOE÷CF.二当点0、£。共线时,OC段大值为4+211,故答案为:4+2FA变式训练【变式1T如图,走形A8C).A8=2.8C=4,点八在X轴正半轴:.点。在F轴正半轴上,当点八在X轴上运动时,点D也阕之在)轴上运动,在这个运动过程中,点C到晚点O的最大距离为(C.2+1D.25解:如图.取Ao的中点连接/.;矩形A80iAB=2.HC=A.'.CD=B=2.AD=BC=A.;点是4。的中点,.,.AH=DH=2.,CH=Vdh2D2=V4+422VZtOD=90',点,是AD的中点,0H=yAD=2ftOCMM>.CO<OHCH.当点,在OC上时,Co=OH+CH,.CO的最大位jOHH=22+2.故选:A.【变式1-2.如图,NMaV=90°.已知&BC中,AC=SC=BA8=10.ZkABC的更点A.I分别在边。M、ON1.当点8在边ON上运动时,A随之在"W上运动,2XA8C的形状始终保持不变,在运动的过程中,点C到点O的最小矩离为解:作C"1.A8于连接。.如图.:.AHHH=AB=5.26RlBCHll,.CH=xC2-BH2=132-52=I2,;为A8的中点,.,.OH=-AB=S,2.OCHC"-O当点C0、共找时取等与),二。C的Ai小值为12-5=7.【例2】.如图.点人8分别在y轴和X轴正半轴上滑动,且保持线段A8=4,点。坐标为(4.3).点A关于点。的对称点为点C连接8C,则8。的最小值为解;如图所示,取八8的中点£,连接O£,DE.OD.由题可得,。是Ac的中点,。£是4AeC的中位战,.RC=2DE.;点”坐标为(4.3).".OD-y2+4,VRtAtfO'>.OE4WX4=2.22二当。.E。在同直线上时./)月的最小值等于OO-OE=3.8C的最小值等于6.故答案为:6.A变式训练【变式2-1.如图,OA1.O从垂足为0A0分别是射线。A、08上的两个动点,点C是线段。的中点,且PQ=%点。从点O出发沿08方向运动过程中,动点C运动形成的路径长是e.ZO=90j.当Q点与。点限合时,PQ的中点。在OP的中点处.当P点与。点歪介时.PQ的中点C在0(?的中点处.:PQ=4,.C.点运动轨迹是以O为圆心,2为半径的4播匕4二动也C运刈形成的用IlK='n×4=11,4二动点C运动形成的路径长足n,故答案为n【变式2-2.如图.在AAfiC中,NABC=90°.AB=3,80=4,/)为AC的中点,过点。作。£_1_。凡DE.。尸分别交A8.BC于点£F.求£尸的最小值.,.Z/-OF=W5.".ef2=de2+df2.当DE与。尸的值笈小时,EF长收的值最小,即当DF'1.BC.DE'UB时.线段£f值朵小,如图,过。作。£'1.AHTE'.DF'1.BCTF',VZMC=90o,A8=3,C=4.4C=5.;。是斜边AC的中点,D=-C-2.5.2Ff=8025."的最小值为25实成演练1.如图,NMoN=90:矩形ABa)的顶点A,B分别在OM、ON上,当8在边ON上运动时,ARfl之在边OM上运动,矩形八8C。的形状保持不变,其中八8=2,flC=3.运动过程中,当点。到点O的用离坡大时,OA长度为)/上,oBNA.3-1B.3C.2D.2-3解:如图,取A8的中点,连接。£、DE.YNMoN=W.OE=E=4=×2=l22;四边形AbCC是能形,:.AD=BC=a.GRtZA½中.市句股定理得./-AD2+AE2(3)2+l22.由:角形的:边关系得.O.R”三点共线时点。到点。的距离被大,此时.OD=OE+DE=1+2=3.j:;点八作AF1.ODJF.则COSN八。丝"=里,DEAD噂鼎解得DF=-.VOD=3,;.点F是OD的中点,A承诳平分OD.:.OA=AD=y13.故选:B.D2 .如图,RtAAHC中,AB=(>.AC=8.ZBAC=90o,D.E为AB,AC边上的两个动点,且)E=6.为DE中点,的鼓小值为(>.213B.73C.3tld.解:如图,连接AK在AIrJb截取AG=I.5,连接FG.CG.VZR4C=90,F为DE中点,.3=?。£3.2,点F在以点A为圆心,AF为半径的圆上,坐q=整ZGAF=ZBAf,AF2AB.MAGFsAAHi.GFAF1Fm'巧G4«F.21±BF+CFGF+CI2,当点G点立点C共线时,以小值为GC的长,CG=VAG2+AC2-4+4<隼,.lyf+CF的果小伍为乂笋,故选:D.3 .有一架竖直能在直角墙面的梯子正在下滑.一只猫猿能盯住位于梯子正中间的老取.等待与老取距禺最小时扑捉.把墙面、梯子、猫和老鼠都理想化为同一平面内的线或点,模型如图,NA8C90。.点M.N分别在射线8小8C匕MN长度始终保持不变,MN=4,E为,MM的中点,点。到8八,8C的距离分别为3和2,在此滑动过程中,猫与老鼠的距离。E的最小曲为()山勾股定网得:HD32+22V13.在RtAMBN中.点K是MN的中点,tfA,-A,2.2,点E的运动轨i足以B为I如心.2为半径的弧,.当点E落在线校BD上时./兄的值鼓小.。£的最小也为;13-2,故选:C.4 .如图,AD/BC,D=2,BC=3,ZSABC的面积是4,而ZSACO的面积是.一3一,:.ZS48C的面枳为4,且8C=3,:.ABC的病为3':AD/BC.且AO=2.四边形/18。足悌形.川边形A8C。的面枳为:-J××(2+3)=空233.AC。的面枳为:岑-4-.«555故答案为:A.5 .如图.Z1WOAf=Wt,长方形A8C/)的顶点8、C分别在边3人(”上.当8在边上运动时.随之在边。N上运动,若CO=5.HC=24.运动过程中.点Q到点。的最大即离为q_.解:如图.取BC的小点儿连接ORDE.OD.,当。、D、E三点共线时,点/)到点。的距离最大.此时.VCD=5.BC=24.:.OE=EC=1BC;12.2Of=VdC¼C=144+2513.二OD的最大值为:12+13=25.故答案为:25.6 .在RtZA8C中,NA8C=90°.A8=8.BC=4如图,将宜先顶点8放在原点.点4放在y轴正半轴上,当点B在X轴上向右移动时,点八也随之在)轴上向下移动,当点到达晚点时,点B停止移动,在移动过程中,点C到原点的最大距徭为_4+4加一.a解:如图所示:取A8的中点£,连接OECiE,当O,E,G在一条H设上时,点C到麻点的距离最大.在Rt)0.YA向=.48=8,点(用为斜边中线.0E-E-t=4.2又'.81C=8C=4,.,C=B1c12+B1E2=2.,'.C到原点的最大距离为:OE+CE=4+4.故答案为:4+47 .如图.在等腰直角三角形ABC中,NB=90°,AB=4,点”,N分别为边A8.BC上的点,J1.r=2.点D,£分别是8CMN的中点,点P为斜边AC上任意一点,则PE+PD的最小侑为2,亏-I.耨:如图.作点/)关于AC的对称点。,连接CO'.HD,.Bl),交AC干点”.DD'交AC于点则PD=PD'.VZ.WftV=90,.MN=2.E是MN的中点、.连接'-I.£在以B为心半径为1的Ie位于ABC的内部的弧上;U,;PE+PD=PE+PD'=BE+PE+PD'-I.当8、E.P、D,四点在同一条在线上时,BE+PE+PD'=BD'取小,即PE+PD=BD-I最小,OD是BC的中点.:.CDwBC=2.;点ZXD'关于AC对称,JAC垂直平分&/)',:.CD'=CD=2.ZD,CF=ZUCF=ZCDir=NCD'0=45°.1.NDCD'=90'.m=BC2+BDz2=42+22=.PFaPD的M小位为25-I.故答案为,25-I.8.如图,ACB=AO8=90°,B=f),E为AB中点、<1)若8=2.求ACDC的周长和面枳.<2>若NC7M)=15,求aCM的面枳.VZACR=ADR=tM,AB=6,E为A8中点CE=3,El)=3,CD=2./.C7cE2-CH2=Vs2-I2-2V2,CDE的周长2+3-3-8.«:/%的面枳-<DEH=y×2×22=22<2>7ZACfi=ZAO=90,.48=6,E为AR中点、.CE=3,即=3,设CEA=2.DE4=2(x+15)=2x+50.:.ZCED=W',CDE的面枳=,×3×-9.如图所示,一根长2.5米的木棍(B),斜钻在与地面(OM)垂百的墙(O,V>上,此时OB的距离为0.7米,设木棍的中点为R若木棍A端沿塔下滑,且8端沿地面向右滑行.<1>如果木棍的杼端8向外滑出0*米,那么木根的顶球A沿墙下滑K少距窗?(2)木棍在滑动的过程中,请判断八、6B、P四点的所有连线中,旗些线段的长度不变,并简述理由.3在木机滑动的过程中当滑动到什么位置时.%。3的面积最大?简述理由,并求出面枳的最大值.曲在直角ZXA8C中,已/AB=25n.BO=OIm,则AO=d2.52.0.72=2.4,“YDo=OB+BD,*OD=1.511*T直角:知形(TW)中,AR=CD,且CD为舒边,二。=J(CD)2-(OD)2小.AC=OA-OC=2.4m-2m=()Ant二木棍的项端A沿墙下滑0.4M<2)AB.AP.BP、Op均不变.理由:因为。为AB中点,所以AH、AP.8P不变:在宜角:为形中.斜边上的中线等于斜边的一半,因为斜边A8不变,所以斜边上的中线Oa不变:(3)当“08的科边上的而h等于中线OP时面积最大.如图,着与OP不相等,则总有VOP,故根据三角形面枳公式,有h与OP相等时八08的面积以大,此时,SA80=X2.5X,25=l.5625噜,.所以AAOS的最大面积嬉(1,5625>»r.10.如图,平面直地坐标系中,将含30'的二角尺的出角顶点C落在第二象限,其斜边两州点八,。分别落在X轴、y轴上,且A8=l2"n<I>若08=6(w.求点C的坐标:若点A向右滑动的距禹与点B向上滑动的即禹相等,求滑动的距离:(2)点C与点。的距离的加大值=12cm.:.OB=6、.".BC=6.BAO=31.ZABO=6i.又.cM=6ir,:.ZCBD=W.ZBCD=30'D=3,CD=53.所以点C的坐标为(-339);设点A向右滑动的距离为*,根据题意得点B向上制动的距离也为X,如图2:AO12×csZalO-12×cos3(-63:.AO-(/3-x,O=6+.ATr=A8=12在ATO1中,由勾股定埋得,<fn3->2+<6+x)2=12*.解得:a=6(3-I).滑动的点离为6<3-I>:<2>设戊C的坐标为(.y>,过C作CE1.t轴,CDly.率足分别为£,如图3;则OE=-X,OD=y,VZ4CE+ZCE=90,NDCB+N8CE=90°,:.ZACE=NDCB,又.A"=N8DC=90'.:.AACEs&BCD.CEACH,CE3rzCDBCCD670,.v=-3.OCZ=X2+y2=F+<-3x>2=42.二取A8中点区连接CE,OE,则CE与翻之和大于或等于Ca当且仅当C,E.O:点共线时取等号,此时Co=Ct+OE=6+6=12.故答案为:12.笫二问方法二:因/AC8与/八08和为180度,所以NaO与NC8O和为18()度,故A,O.B,C四点共园1,I1.a8为1的C1.径,故茏Co的皎大伯为12.II.如图,一个梯子A8斜席在一面墙上,梯子底端为A,梯子的顶端8距地面的垂直亚氏为8C的长.1若梯子的长度是I(Mh梯子的顶端8距地面的垂直距璃为8m.如果梯子的顶端下滑I,”,原么梯子的底端A向外滑动多少米?<2)设A8=c,BC=q,AC=b,且请思考梯子在滑动的过程中,是否一定存在顶端下滑的距国与底端向外滑动的跖离相等的情况?若存在,谛求出这个跖离;若不存在,说明Pll由.c=102-82=6Ih勾收定厂得,C=y102-72=V51w)-.'.AA=AC-AC=<51-6>m.梯广的底前A向外滑动(51-6>mi<2>存在顶端下泄的匹要与底端向外滑动的距自相等的情况,设帽子底端向外滑动米,则<a-,r>2+<fr<.v)2=e2,解忠x=-b.n=0(舍),.x=a-b>即梯子底端向外滑动()米.12.如图,将一块等腰H角三角板A8C放置在平面直角坐标系中,NAC8=90",AC=BC点A在),轴的正半轴上,点C在X轴的负半轴上,点8在第二象限.<1>若Ac所在直线的函数发达式是y=2t+4求AC的长:求点8的坐标:(2)若(1)中AC的长保持不变,点八在)轴的正半轴滑动,点C随之在X轴的负半抽上滑动,在滑动过程中,点4与原点。的最大距禹是上如一.:.A(0.4)s当v=2a4=0时,X=-2.:.C(-2.0).0A=4.OC=2,c7oa2-k)c22V过点B作HD1.X轴干点4如图1所示.VZACO+ZACB+ZBCD=IKO'.Z4CY>ZCAO=90°.NAC8=90°.:.ZCAO=ZBCD.NAOC=NCDB=90°在zu。C和阳中,Zcao=Zbcd.AC=CB4OG(7J(AAS).CD=AO=4.DB=OC=1.=()C+CD=6.二点8的坐标为<-6,2>.取/1C的中点£,连接8£.OE.OB.;/AOC=90".AC=25OE=(7=4C=5VC±AC.C-25,BE=bc2-*ce2=5O.E.8不在一条口线I.MJOfl<6>£+«£-55.花点”.E.8在条宜线I.MlOBOt+fc-5+5.节O,E,。二点在一条R找上时,0。取得拼人值,加大值为5点,故答案为:5÷5

    注意事项

    本文(模型48 梯子最值与斜边中点模型(解析版).docx)为本站会员(夺命阿水)主动上传,课桌文档仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知课桌文档(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-1

    经营许可证:宁B2-20210002

    宁公网安备 64010402000986号

    课桌文档
    收起
    展开