齿轮系统啸叫噪声的计算方法与建模方法.docx
齿轮系统啸叫噪声的计算方法齿轮啮合过程产生的力经常被认为是齿轮箱的主要激励来源。实际上,通常假设齿轮的静态传递误差和齿轮岫合过程中的刚度的波动是齿轮箱辐射噪声的主要来源.这个过程所产生的动态啮合力通过轮体、轴和轴承传递到齿轮箱上。齿轮箱的振动则会直接引起齿轮箱的啸叫声。本文提出了一种降低啸叫噪声的有效方法。两个基本的途径是降低激励源和阻隔激励力向箱体的传递。静态传递误差是由于齿变形和型而误差(修型和加工误差)引起的。首先通过有限元模型计算得到齿的合规矩阵:然后,为r估计静态传递误差.针对驱动轮的一组连续位置,计算齿轮副的静态平衡,最终,得到了在不同在我荷卜.由于啮合刚度波动引起的传递误差。齿面微观轮廓是减小激励的有效手段。因此,提出了种有效的齿面修型方法。通过频谱迭代法求解频域内的运动参数方法来得到动态响应,这种方法能有显著降低求解时间.实际上,这种方法也能够有效的进行离散分析和参数研究。计算所使用的输入是通过有限元计算得到的激励源和整个齿轮箱的模态,包括齿轮,轴和外壳。通过与实验数据对比,证明了该计算方法的准确性。1.绪论啮合过程是齿轮传动系统的更要激励源,齿轮箱常常是汽车噪声和振动的应要来源。齿轮箱的内部激励源是各种各样的,主要来源则是齿轮静态传动误差(STE)的波动11-2。STE表示动齿轮的实际位置与其理论值之间的差异。STE值的波动主要是由手齿自主(工艺修正)和非自主(工艺瑕疵)的形状偏差以及齿、轮体和曲轴的微观弹性变形引起的,同时传递误差也会引起啮合刚度的波动。在运行状况F.参数激励会在啮合过程中产生动载荷。动态载荷通过轮体、曲轴、轴承传递到齿轮箱体结构上,如图1所示。同时,齿轮箱振动也是噪声的最主要来源3“图1齿轮箱喘叫噪声的产生和传递I、齿间激励:2、激励的传递;3、箱体振动传递误差可以通过对主动齿轮微观修型来减小,进而能够降低辐射噪声。在本文中,对每对齿轮副进行以下的参数化优化:小齿轮与从动轮的齿顶修型,比如齿顶材料的去除量;小齿轮和从动轮齿顶修型的起点;主动齿的齿轮中心:在一定扭矩卜对简电齿轮系统进行修型已经得到了广泛研究4-6。但.对多齿轮传动系统的研究依然很少见7.本文介绍了对卡车定时级联齿轮传动系统进行优化的详细过程,传动系统结构如下图所示:图2研究齿轮传递误差的对象在本文研究中,第一个传动链由3个螺旋齿轮组成并共有8个待优化参数,第二个传动链由2个齿轮组成,因而具有5个优化参数。此外,在齿轮型面上做的修改需要适应大扭矩范围的要求。由于排列组合而来的优化方案有很多,就需要个有效的方法来进行计算。在此我们选用了粒子群优化法|8|.由于这种方法是次序。元启发,因而会非常高效,也就是说不必评估函数的一阶导数.此外,我们还研究了这种方法的鲁棒性。实际上,制造误差的高散带来了齿轮传动系统的动力学响应和噪声的剧烈变化。通过对各个结果进行统计分析,使得我们能够对制造误差和状态误差对齿轮传动的影响有更加深入的认识。如图3.我们将动力学响应计算过程应用于汽车齿轮箱上。图3用手研究齿轮箱动态响应的齿轮系统该计算方法需要建立齿轮箱有限元模型,来获得其模态信息。齿轮之间的接触用连接每对啮合齿轮自由度的刚度矩阵来建模。为了实现这一目的,我们采用岫合刚度的平均值,以获得平均模态信息。该方法使用强大的频率分辨率算法,以迭代求解动力学方程“1-12卜并对领谱迭代法进行扩展,以便将优化参数考虑在内。在本案例中,由于刚度的波动造成激励之间存在耦合"3。我们得到啮合动力学方程如卜:/=了JK.C,M分别代表系统的刚度矩阵,阻尼矩阵和质量矩阵:X表示系统的广义坐标系,(')代表时间导数;Rj是两个啮合齿轮的自由度的宏观几何耦合矢星:Kj是第j阶啮合刚度:求解可以得到齿轮箱在频域上的响应。运行速度直接影响共振峰幅值和振动响应幅值,这两个量直接影响齿轮箱噪声的严重程度。这个方法也可用于优化变速箱其他部件,或计算不同的齿轮型而带来的传递误差。图4计算过程示意2 .静态传递误差计兑以及齿轮型面优化优化问题需要定义一个适当的适应性函数和算法来求解。本文这部分内容闸述解决这困难问题的途径,此外,对该方法的鲁棒性也进行了研究。2.1 静态传递误差计第文献14-15中介绍的传速误差计算方法是一种很经典的方法。这种方法考虑了用性静态变形和齿面之间的初始间隙,通过求解描述齿轮接触位置的方程来得到暗合位置。2.2 优化后适应度方程常用于描述啮合误差的参数是峰峰值响应(STEPP),考虑到优化工作的目的是在给定扭矩范围(Tmin-TmaX)卜来减小传递误差,因而选用f作为适应度方程。f的定义为转矩范围上,由3点高斯近似得到的STEPP积分函数。J/=Jp(T)STE(T)dT其中将扭矩分布P(T)设定为均匀分布。2.3 粒子群优化这种方法是基于一个群体在给定空间中交换关于其位置的信息的消除行为,并根据其正在搜索的内容来踊定最佳位置。在本案例中,使用了25个粒子,位于根据不同优化参数构建的超空间中的初始随机位置。研究中的最佳位置即是能使适应度函数最好的不同优化参数的组合。针对每个迭代步和每个粒子,需耍在以下条件下来计算新的粒子速度以及对新位置的评估:当前粒子的速度:当前位置:最佳位竟:相邻粒子的母佳位置:2.4 鲁棒性统计分析假定SO是由粒子群优化方法得到的优化方案.鲁棒性研究是使用蒙特卡洛模拟分析完成的,即在每个参数一定的参数步长下,考虑可能的轮廓和螺旋角误差,来得到1000组优化方案,在以优化优化方案为中心的超空间上进行随机选择。对100o个优化方案分别建立概率密度函数,并得到平均值和标准偏差等统计值.图5给出了不同优化方案的概率密度分布,并表明了该如何选择最优解决方案。方案2有较小的平均值,但波动范围较大;S1.则是在平均值和劣化能力之间的最优妥协。图53齿轮正时系统优化前方案和3个优化后方案概率密度分布对比2.5 结果分析-噪声水平的降低将优化前后的齿轮组安装在内燃机上,并测成相应的辐射噪声,实际测试得到的噪声级比预期值要差一些,其中一个原因是优化后次齿轮系统上的扭矩值比优化前要稍高。但在这种情况卜.,整体声功率还是降低了Idb.这一结果是令人满意的,因为初始的噪声水平并不高,而I1.我们只优化了10个齿轮中的5个,同时测试过程中其他噪声源依然存在。值得注意的是,当我们只优化小齿轮时,优化前后声功率级在某些频段上可以降低4db,雷诺卡车已采用该标准作为齿轮传动系统开发中的新标准。图6声功率随着发动机转速的变化3 .振动响应计算结果的物证如图7所示,本文计莫方法在典型的汽车变速箱上得到了广泛而复杂的测试测试时,使用了加速度传感器、麦克风和光学编码器对静态传动误差波动、动态传动误差、齿轮箱振动和啸叫噪声进行了测试。在本文中,我们主要关注齿轮箱的振动。测试过程是在法国Un1.y的BaCy非循环测试台上进行的。实验台是由由电机驱动的齿轮箱构成的,并通过给定转矩来模拟车轮的反作用力。测试过程中,转速和扭矩也都进行了测量。图75金证计算结果的步骤实验中齿轮箱的装配并没有完全完成,这是由于装配完成后,在给测忒台施加静态扭矩时,实验台无法完成模态测试。因而,尽管啮合刚度和齿轮刚度在预紧力作用下的刚度的变化至关重要,在本次测试中并没有考虑在内.本文中,我们使用了VibratCC前期测试得到的模态结果。实验中我们通过向测试台施加静态扭矩来对系统进行测试,但齿轮箱实际工作时的夹紧力与BaCy实验台上的夹紧力并不相同。由于齿轮箱的某些部件在不同的条件下在频段上会有较大的离散性,因为未完全装配的齿轮箱并不能完全准确的描述实际齿轮箱的动态特性,但是,在这一实验台上得到的测试结果能够准确的验证测试计算方案。图8显示了在不同转速下齿轮箱加速度的变化。比较了在主要阶次和模态上频率和幅值的结果“主要阶次和频段上的对比结果表明:动态幅值的计算是正确图8测试与计算结果得到的振动响应与转速变化。计算结果中表明了主导阶次和主导频率为了验证测试结果与计算结果的准确性,我们对测试结果进行了阶次跟踪分析。我们主要考虑了前两阶啮合频率。一阶啮合频率对应Z1/72=35/39,二阶啮合频率对应Z374=I669.齿轮箱的一个测点上得到的二阶啮合频率测试结果如图9所示:O200400600800100O12001400MeshingftcqyofP1>e<JHz图9二阶岫合频率的追踪.齿轮箱测点上的振动响应.红色实线:测出值;紫色虚线:仿真计算值我们对不同运行状态下的动态模型的修正,解释了一些不可忽视的频率漂移和模态吻合差异。即便如此,测量结果与计算结果之间的一致性仍是令人满意的。工程应用中主要关注的问题的要确定不同部位对噪声的贡献量,以确定齿轮箱上图IO显示了在特定选择检测点上,测试与计算得到的加速度值得对比。结果均表示,在n2点振动量级最小,因而可以作为与其他部件的连接点。此外,由于齿轮箱的装配状态不同以及模态调推引起的频率的偏移给计算结果与测试结果带来了定的偏差,但总的来说这方法仍适合作为预测不同位苴噪声、振动贡献垃的分析工具.图IO齿轮箱测点上加速度RMS值。左例为仿其结果,右侧为测量结果4 .结论本文提出了一种齿轮箱啸叫噪声的计算和优化方法。首先,计算得到静态传递误差,并在20多个实例中进行验证“该过程考虑到了多齿轮啮合系统的夏杂性,并对扭矩变化进行的合理的处理,鲁棒性研究是本文研尢的关键之一,因为这一研究为考虑制造公差卜.寻求最优的优化方法至关重要。我们仅仅对10个齿轮中的5个做了优化,整体声功率水平已经降低/至少IdB.这一结果是令人满意的。值得一提的是,声功率的测试是在其他噪声源(内燃机和其他部件)存在的前提下进行的。这一结果是给我们优化卜卜一代番诺卡车传动齿轮带来了足够的信心。文中使用了频率迭代法来求解齿轮箱系统的动态响应,由于这方法计算效率而,因而我们才能够对不同参数进行优化研究.同时提出了一种可以将制造误差考虑在内的齿轮箱啸叫噪声的预测方法。这一方法得到的广泛的验证,并可用于优化现有的齿轮系统。计籁方法能够较为准确的计算结构的振动响应幅值。同时这方法也能够识别出引起啸叫噪声的关键参数,比如运行速度,不同部件对噪声的贞献垃,主导啮合阶次等。与此同时,还需要尤其注意模态数值计算的准确性,来确保预测结果的准确性。齿轮啸叫噪声的建模方法齿轮啸叫噪声建模和仿真计算方法直接影响噪声结果的可苑性。法国Vibratech集团与懿朵联合开发的Vibragear软件通过仿真与测试结果对标,能够准确高效预测齿轮啸叫噪声,为解决啸叫何超提供可靠工具。齿轮啮合过程产生的力经常被认为是齿轮箱的主要激励来源。这个过程所产生的动态岫合力通过轮体、轴和轴承传递到齿轮箱上。齿轮箱的振动则会直接用起齿轮箱的啸叫声.通常假设齿轮的冷态传递误差和齿轮哂合刚度的波动是齿轮箱辐射噪声的主要来源。这些激励来源于齿轮变形和齿轮微观参数(主动修型和制造误差)。实际中,预测岸态传递误差引起的噪声问题仍然是一个难题。本文提出了种基本的计算流程,通过使用有限元方法并考虑参数激励以及耦合.整个流程基于领域的模态方法,对r分析很多自由度系统能够提高效率。第一步,通过齿轮宏观和微观参数计算静态传递误差和齿轮啮合刚度。第二步,利用以上数据计算动态传递误差、齿轮动态载荷和齿轮箱动态响应。此方法中需要建立齿轮箱有限元模型并进行模态分析。通过专门齿轮箱台架设备进行测试,并时比仿真和试脸结果“使用加速度传感器和光学编码器测试静态和动态传递误差以及箱体振动响应。对每一个步骤都进行了仿真与试验的对比,来验证仿真方法的准期性。绪论齿轮箱是汽车上主要的振动噪声来源之一.齿轮箱内部有多种激励源,取决于齿轮箱状态。例如味叫噪声来源于负载轴系,尤其是反向运行时。激励源是参数激励,并通过轴系和轴承传递到齿轮箱体,见图I所示。然后齿轮箱体振动和噪声直接或间接传递到乍内。图I齿轮箱啸叫噪声的产生.和传递1、齿间激励:2、激励的传递:3、箝体振动激励可以分为两种现象:传递误差和啮合刚度波动.传递误差主要由T主动(齿轮修型)和非主动(制造误差)的齿轮几何偏差引起。齿轮和轴的变形导致传递误差额外的波动。齿轮之间的接触主要通过喷合刚度(见图2进行建模。岫合刚度根据接触状态1.¾S时间变化(接触齿数、啮介线位置等)图2齿轮接触等效模里。小齿轮用3D模型或集中惯量建模.齿轮接触用啮合刚度建模传递误差计算对于齿轮系统,负载卜的STE是主要噪声来源之一。STE是在低转速和给定施加扭矩下被动齿轮实际位置和理论位置之差。其特性取决于岫合齿轮对的瞬时状态。STE来源下齿轮变形、齿面修型以及制造误差。STE的计算方法相对比较经典。对于主动齿轮每个位置O,通过啮合运动学分析可以计算出啮合面内相配齿面理论啮合线。卜面方程组描述了齿轮静态用性变形。(C.P=()-e-hertz(P)IWR=P计算中需要以卜数据:初始齿轮间隙:几何缺陷和齿轮微观修型的函数;齿轮柔度矩阵C:通过计竟有限元模型静态弹性变形,并进行插值得到:赫兹变形hcnz:根据赭兹理论计算得到。实际计算中需要考虑到每个齿轮位置H啮合线上不相邻的齿轮,并能够得到时变的STE和齿变形。其中STE是施加扭矩(或施加载荷P)的函数。啮合刚度k与施加扭矩T=P*Rb和静态传递误差51D有关,并通过以下公式计算:其中Rb代表被动齿轮基圆,e(I)代表以米为单位的静态传递误差(施加到啮合线上)Interpo1.ationofstiffnessmatrixonthecontact1.inesApp1.iedforceFTetbstiffnessMacrreomevyMicrAgeometryHHctJConuct1.ines(tbcofctica1.)完整计算流程见图3所示:EST(0)So1.vingcontactequations图3完整传递误差计算流程用于研究的齿轮系统用于进行研尢的齿轮箱如图4所示,其中一部分箱体被移除。齿轮箱由4个齿轮、3根轴和2对啮合组成。每对哺仔齿轮的齿数Z如图所示。使用加速度传感器和光学编码器测试静态和动态传递误差以及壳体振动响应。PnniaryandSecondaryShafhmeshSeCondaryandDiffereiMia1.ShanSIneSh图4用了研究齿轮箱动态响应的齿轮系统动态响应计算流程该计算方法需要完整的齿轮箱有限元模型,来获得其模态信息。齿轮之间的接触用连接每对啮合齿轮自由度的刚度矩阵来建机为了实现这目的,我们采用啮合刚度的平均值,以获得平均模态信息该方法使用强大的频率分辨率算法,以迭代求解动力学方程|5-6。并对频谱迭代法进行扩展,以便将优化参数考虑在内。在本案例中,由于刚度的波动造成激励之间存在耦合。我们得到哦合动力学方程如下:Mk+C*Kxk1.(t)R,RTX=£k,R,e(t)riI-IK.C,M分别代表系统的刚度矩阵,阻尼矩阵和质量矩阵;IX)表示系统的广义坐标系,()代表时间导致:Rj是两个啮合齿轮的自由度的宏观几何耦合矢量:Ki是第j阶啮合刚度:最终可以得到频域卜的动态传递误差(DTE)、齿轮动态载荷和箱体振动。运行速度直接影响共振峰幅值和振动响应幅值,这两个量宜接影响齿轮箝的严重程度.时不同施加扭矩可以重夏以上流程,计算流程的第一部分,即STE计算,可以用来优化齿轮参数以最小化激励。动态计算可用于优化变速箱其他部件比如箱体的几何形状,轴承刚度)。所有计算流程如图5所示。图5计算过程示意计算流程的验证本文计算方法在典型的汽车变速箱上得到了广泛而复杂的测试验证,如图6所示。测试时,使用了加速度传感器、麦克风和光学编码器对静态传动误差波动,动态传动误差,齿轮箱振动和啸叫噪声进行r测试.在本文中,我们主要关注齿轮箱的振动。测试过程是在法国1.ardy的BaCy非循环测试台上进行的。实验台是由由电机驱动的齿轮箱构成的,并通过制定转矩来模拟车轮的反作用力。测试过程中,转速和转速也都进行了测量.1."?-g皿Won.3”UmtnUtion0"”*rbox图6收证计算结果的步骤实验中齿轮箱的装配并没有完全完成,这是由于装配完成后,在给测试台施加静态扭矩时,实验台无法完成模态测试。W1.ftJ.尽管岫合刚度和齿轮刚度在预案力作用下的刚度的变化至关重要,在本次测试中并没有考虑在内“本文中,我们使用了VibW1.CC前期测试得到的模态结果。实验中我们通过向测试台施加静态扭矩来对系统进行测试,但实际上齿轮箱实际工作时的夹紧力与Bacy实验台上的夹紧力并不相同。由于齿轮箱的某些部件在不同的条件下在频段上会有较大的离散性,因为未完全装配的齿轮箱并不能完全准确的描述实际齿轮箱的动态特性。但是,在这一实验台上得到的测试结果能够准硬的险证测试计.算方案。图7对比了传递误差测试和计算结果。测试的平均值结果没仃得到,但是可以对比的重要的波动值.峰峰值得到正确的估计,传递误差测试非常更杂。制造误差和装配误差会导致很大的施散性,而且,每个齿的微观参数都应该进行准确测试,以得到真实齿面形状。测试和计算的一致性是令人满意的。测忒曲线是对试验数据进行频谱分析并重新提取得到。MeasurementComputationNon-dimensionna1.time:(tTmNondimensk>nnatime(t11,TJ2JUofSsIESUeJ1.图7测试(左)和计算(右)静态传递误差结果。对比险证峰峰值图8显示了在不同转速卜齿轮箱加速度的变化。主要比较了在主要阶次和模态上领率和幅值的结果。主要阶次和频段上的对比结果表明:动态幅值的计算是正确的.W5O6M.15PJX;SE-一-:一3二pnfdE图8测试与计算结果得到的振动响应与转速变化。计算结果中表明了主导阶次和主导频率为/肠证测试结果与计算结果的准确性,我们对测试结果进行r阶次跟踪分析。我们主要考虑了前两阶啮合频率。一阶喷合频率对应ZIZ2=3539,二阶啮台频率对应Z3Z4=1669°齿轮箱的个测点上得到的二阶啮令频率测试结果如图9所示:娄02划摘10010COCUoCMesNngfrequency(Hz1.图9二阶啮合频率的追踪.齿轮箱测点上的振动响应.红色实线:测量值:紫色虚线:仿真计一算值我们对不同运行状态下的动态模型的修正,解择了一些不可忽视的频率漂移和模态吻合差异.即使如此,测量结果与计算结果之间的一致性仍是令人满意的.测试不能考虑结果的离散性,但是仿我可以做到,根据齿面测培结果,进行了离散性研尢来确定动态响应包络线。由于测试得到的齿面微观参数离散分布不符合高斯定律,因此假设齿轮误差范围内平均分布.众所周知,制造和装配误差引起的离散性会导致齿轮系统的动态结果和辐射噪声较大的变化(有时高达IOdB).因此计算了一百次激励结果,所有啮合阶次对应的响应结果如图IO所示。在一些频率处,由于模型问题会有较大的离散性。尽管如此,阶次响应幅值与测忒结果一致性很好。级啮合阶次离散性要高于二级岫合阶次,二阶要比阶对离散性更加敏感.MeasurementsdW二S5-Ae<工程应用中主要关注的问题的是不同部位时噪声的贡献被,以确定齿轮箱上哪个位.巴具有最高的振动水平,以及不同位冏振动水平的排序。图I1.显示了在特定选择检测点上,测忒与计.算得到的加速度值的对比。结果均表示,在n2点振动星级最小,因而可以作为与其他部件的连接点。此外,由于齿轮箱的装配状态不同以及模态调整引起的频率的偏移给计肾结果与测试结果带来一定的偏差,但总的来说这一方法仍适合作为预测不同位置噪声、振动贡献量的分析工具。图11齿轮箱测点上加速度RMS值。左侧为仿真结果,右侧为测试结果结论本文提出了一种完整的齿轮箱啸叫噪声计算方法,并且考虑了制造误差。本文计算方法得到了总体验证,可用于优化现有研究的齿轮箱系统。根据齿轮的微观和宏观参数,系统激励(STE和啮合刚度波动)能够得到正确估计。然后使用完整系统有限元模型,计算识别关键参数,通过最小化激励源(比如,静态传递误差)能够在指定工况下得到最小啸叫噪声。对模型进行调试以确保良好的仿真模型。尽管模型中有些参数不够准确,但计鸵结果是令人满意的。箱体表面振动响应结果有足够的计算精度,因此齿轮系统产生的啸叫声功率结果也是准确的。【参考文献】I.Rcnx>nd,D.WkxiR1SabotJ.”ComportcmcncdynaniiquceiaaMiMiqucdcMransmiwionsparcngrcnagcsrsymhCscbibIiOgnvhiquc".1.993ha1.(MX4869.2 .WeJ1.xjtn.D.B."I'Unihnien1.a1.knowkdge<>ea11Hixea%un'<!y.*inPr<ccding!<oheConfcrcncc<>11N<>iwarxiVibriHiowofEnj*i11c¼inJransmiviio11.v<.C177.'79,pp.929.Cran1.1.c1.d1.w(itutcofcrhno1.ogy.Ju1.>1979.3 .Ha11i工1.S."DumrkdMMiUe(eetM>tpurear%n.1.*nxe<hng>1.1.he1.nMtu1.iuM>tMechanica1.Engi!ee¼1.72.(1958).p.S7*U2.4 .Rigaiu1.1.Ba11hy.D.aMo<fc1.inj;in(hmi1.ySixnfMatic1.ninsmivsioncmimfgainixf1.ec1.ofwbccIbodydcfb1111aiiQrWndimCmciicmsbcwccn*JjaCCnUOQdCd1.Ph*.MQcan>quc1.ndutric1.IcctMai©riauxVo1.511ssuc2(1998)pp.58-6O.SPerre1.1.iiiiKkUr"E1.U1.sede、MdCanisnwM1.eTninsteiten1.fviwEneurdeTrunsmtssionedaKdpen、CDyiUmiqUOdC,<或cScVhcvic%Autcfnobi1.u”.ThdscdedacSnHdcINECokCeng1.CdC1.ygN9207.w1992.6 .Perrct-UaddJ."Ax>riginu1.mcthodforcompu(ingthcconscofupa11imcrica1.1.ycxcita(cdforvcdsystcm,mJournuk)fSoundadVbration.vo1.196p.165-177.1.996.7 .CartHne1.1.A.”Carac1.Ans31.onvibrxFac<Hj%1.>quedV1.'unc3%cadededu1.ritHihDnp<idsk>urdB.Thisc<fc<i11c1.nru1.<k1.VEco1.eCcn<111.cdc1.,)<>11N'2012-34w.20(«.8 .Cart>o11i.A.Rigud.E.1.cBo<.A.cu1.wPatic1.eswannopmza(iouis3nefncicmconuuuona1.me!>odn<Hxic11<>minimizcvibfaiio<sofmuhimeshgcafMnnmis%i1."dvanceinA>u%tu.Mid¼bra1.MMi.201.20II.9 .Akcrb1.nm.M.,Scrcn,U.tGcArtxixNoiscaixiVibra(i:Inf1.ucncwfBcniinPrcIoad,*.TRITA-MMK2<X>8:17.,ISSN4O(II79.ISRN,KTH'MMK.R-0a17-SE.St<Kkho1.m.2008.1.().Nonaka,KubD.A.Ka1.D.S)1.um>ri.T.mS(gean1.cign1.0nnav<prixkicc<igciiniwi(h5cnHk!D.inkHi1.h;iccuracy"SWiprnvcedinjjsntihc1.EcnHiniuIPbwcrTransnissio11nndGcaringConfcrcncc,Sc)<sda1.c.USAW,2.pp.589595.1992I1.DnocN.wEudcdc1.adiscrsi(Hvibfo-acoustiqcdcstunsnnssiotarengrcnagc''.ThMJ佻&UDrukfcMEcNeCsgIeife1.-MiM'2(X)234".20(12.