欢迎来到课桌文档! | 帮助中心 课桌文档-建筑工程资料库
课桌文档
全部分类
  • 党建之窗>
  • 感悟体会>
  • 百家争鸣>
  • 教育整顿>
  • 文笔提升>
  • 热门分类>
  • 计划总结>
  • 致辞演讲>
  • 在线阅读>
  • ImageVerifierCode 换一换
    首页 课桌文档 > 资源分类 > DOCX文档下载  

    二轮复习之三角函数式的化简与求值(基础篇).docx

    • 资源ID:1671410       资源大小:22.87KB        全文页数:18页
    • 资源格式: DOCX        下载积分:5金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要5金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    二轮复习之三角函数式的化简与求值(基础篇).docx

    二轮复习之三角函数式的化简与求值(基础篇)适用学科中学数学适用年级高三适用区域人教版课时时长(分钟)60学问点1、两角和与差的两角和与差的正弦、余弦和正切公式:2、二倍角公式3、协助角公式教学目标1、会用向量的数量积推导出两角差的余弦公式2、能利用两角差的余弦公式推导出两角差的正弦、正切公式3、能利用两角差的余弦公式推导出两角和的正弦、余弦、正切公式,导出二倍角的正弦、余弦、正切公式,了解它们的内在联系教学重点运用公式进行简洁的三角恒等变换,对三角式进行简洁的三角函数化简、求值和证明教学难点1、两角和与差的正弦、余弦和正切公式2、积化和差、和差化积、半角公式教学过程-高考解读三角函数式的化简和求值是高考考查的重点内容之一.通过本节的学习使考生驾驭化简和求值问题的解题规律和途径,特殊是要驾驭化简和求值的一些常规技巧,以优化我们的解题效果,做到事半功倍二、复习预习2、两角和、差角的正弦公式默写下面几组公式:I、两角和、差角的余弦公式3、二倍角的正、余弦公式4、两角和的正切公式(4)求函数式的最值或值域,(5)化简求值.考点2技巧与方;官要寻求角与角关系的特殊性,的E特角为特殊角,娴熟精确地应用公式留意切割化弦、异角化同角、异名化同名、角的变换等常规技巧的运用.对于条件求值问题,要仔细找寻条件和结论的关系,找寻解题的突破口,很难入手的问题,可利用分析法.求最值问题,常用配方法、换元法来解决.四、例题精折例题1化简下列各式:(1)u-IvI+cos2(哈,2办(2)cos2<z-sin2an)*a4)【规范解答】(1)因为学2",所以+gcos2a=ICoSa1.=cosa,rjm3/ra又因了小.a-cos=sin=sin所以,原式=而;(2)簸=cos2f1.fcos2«cos2«cos2a2tan-crcos',-j2sin(:-a卜o?-aJsing-2jcos2a【总结与思索】(1)在二倍角公式中,两个角的倍数关系,不仅限于2是的二倍,要熟识多种形式的两个角的2«,+«.acos2a=sin)±2a=2sin±|是常倍数关系,同时还要留意44三个角的内在联系的作用,用的三角变换.(2)化简题肯定要找准解题的突破口或切入点,其中的降次,消元,切割化弦,异名化同名,异角化同角是常用的化简技巧.例Sg2不查表求sin220o+cos280°+3cos20°cos80°的值.【规范解答】瞬去一tsin?20o+cos280°+3sin200cos800=1(I-COS40。)+g(1.+cos1.60o)+3sin200cos80o=1-cos40°+JiCoS1.60°+百sin200cos(600+200)=1-gcos400+g(cos1.200cos400-sin1.20osin40o)+3sin200(cos600cos200-sin60osi20o)=1-cos40o-!-cos40o-sin40o+-sin40o-sin220o24442=1-cos40o-;(1-COS40。)=1解法二:设x=sin220o+cos2800+3sin200cos800y=cos220+sin280-3cos20sin80,则x+y=1.+1.-73sin60o三-,x-y=-cos400+cos1.600+3Sin1.OO0=-2sin1.00osin600+3Sin1.OO0=O尸;,即=sin220°+cos280°+3sin20ocos800=4【总结与思索】熟知三角公式并能敏捷应用.解法一利用三角公式进行等价变形;解法二转化为函数问题,使解法更简洁更精妙,需仔细体会.例题3设关于*的函数片2cos2*2太。S*-(2a+1.)的最小值为府,试确定满意府=孑的a值,并对此时的a值求y的最大值.【规范解答】由片2(c。SX-,2-“、丁一及CoSxG-1,1一1(-2)1.a)=(-2<<2)21-4<(2),.Ra)=;,.,.1-4a=;na=M2,+0°)或-2a-1=;,解得a=-1g(-2,2),Ittw,片2(cos*+:)2+:,当COSX1.时,即m2Ar,kQZ,HaX=5.【总结与思索】二次函数在给定区间上的最值问魅利用等价转化把问迤化归为二次函数问题,还要用到配方法、数形结合、分类讲座等.例题4设函数AM=Gcos2cos+sinercos。x+a(其中0>0.<3R),且4M的图象在y轴右侧的第f高点的横坐标为?(I)求3的值;(11)假如4M在区间.学上的最小值为75,求a的值.36【规范解答】(I)f(x)=-cos2x+sin2x+=sin(2x+y)+a依迦意得2"C+C=X=>/=1.6322(1【)由(I)知,/(X)=sin(.v+)+-+a).7,又当y-g,当时,工+白似玛,故-卜疝心+当小,从而/(*)在区间Y考上的最小值为36362336岳十冬*故"亨【总结与思索】三角函数求值问感例题5如右图,扇形048的半径为1,中心角60。,四边形PQRS是扇形的内接矩形,当其面积最大时,求点P的位苦,并求此最大面积【规范解答】以。4为X池O为原点,建立平面直角坐标系,并设P的坐标为(c。SaSin。,则I"I=Sind直线08的方程为片石*,直线PQ的方程为片sin6联立解之得Q殍sin8;sin。,所以IPQ1.=COSe-sinfi于是*55=sinaCoSe-gsin0邛(5sin6tOSG-Sin2内邛("sin2G-1cs2°)=也(且sin2a'cos28-')=五sin(28+0)3.3222366.0<<p.<26+;<).1<sin(26+;)41.,sin(28+?)=1.时,&/?5面积最大,且最大面积是W,66此时,仇,点P为AB的中点,A*二).O22【总结与思索】三角函数的综合应用问题的考察课程小结1.求值问题的基本类型给角求值,给值求值,给式求值,求函数式的最值或值域,化简求值2.技巧与方法I要寻求角与角关系的特殊性,化非特角为特殊角,娴熟精确地应用公式留意切割化弦、异角化同角、异名化同名、角的变换等常规技巧的运用对于条件求值问题,要仔细找寻条件和结论的关系,找寻解题的突破口,很难入手的问题,可利用分析法.求最值问题,常用配方法、换元法来解决.

    注意事项

    本文(二轮复习之三角函数式的化简与求值(基础篇).docx)为本站会员(夺命阿水)主动上传,课桌文档仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知课桌文档(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-1

    经营许可证:宁B2-20210002

    宁公网安备 64010402000986号

    课桌文档
    收起
    展开