欢迎来到课桌文档! | 帮助中心 课桌文档-建筑工程资料库
课桌文档
全部分类
  • 党建之窗>
  • 感悟体会>
  • 百家争鸣>
  • 教育整顿>
  • 文笔提升>
  • 热门分类>
  • 计划总结>
  • 致辞演讲>
  • 在线阅读>
  • ImageVerifierCode 换一换
    首页 课桌文档 > 资源分类 > DOC文档下载  

    线性代数之行列式地性质及计算.doc

    • 资源ID:17185       资源大小:561.85KB        全文页数:12页
    • 资源格式: DOC        下载积分:10金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要10金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    线性代数之行列式地性质及计算.doc

    第二节 行列式的性质与计算§2.1 行列式的性质考虑将它的行依次变为相应的列,得称为的转置行列式 .性质1 行列式与它的转置行列式相等.事实上,假如记 如此说明:行列式中行与列具有同等的地位, 因此行列式的性质但凡对行成立的结论, 对列也同样成立.性质2互换行列式的两行()或两列(),行列式变号. 例如 推论 假如行列式有两行列完全一样,如此. 证明: 互换一样的两行, 如此有, 所以. 性质3行列式某一行列的所有元素都乘以数,等于数乘以此行列式,即推论:(1) 中某一行(列)所有元素的公因子可提到行列式符号的外面;(2) 中某一行(列)所有元素为零,如此;性质4:行列式中如果有两行(列)元素对应成比例, 如此此行列式等于零性质5: 假如行列式某一行(列)的所有元素都是两个数的和,如此此行列式等于两个行列式的和.这两个行列式的这一行(列)的元素分别为对应的两个加数之一,其余各行(列)的元素与原行列式一样 .即.证: 由行列式定义性质6 行列式的某一行列的各元素都乘以同一数加到另一行列的相应元素上,行列式的值不变,即计算行列式常用方法: 利用性质2,3,6, 特别是性质6把行列式化为上(下)三角形行列式, 从而, 较容易的计算行列式的值例1: 计算行列式解:.此方法称为归边法.例2:计算n阶行列式解: (1)(箭形行列式)(2) 注意到行列式各行元素之和等于,有.例3:设证明:证: 对作行运算, 把化为下三角形行列式:对作列运算, 把化为下三角形行列式:先对的前k行作行运算, 然后对的后列作列运算, 把化为下三角形行列式:故, .思考练习1.计算行列式2.证明3. 证明答案2.左边=.3. 证 (1)左边(2)左边右边4. 解:从第4行开始,后行减前行得,§2.2 行列式按行列展开对于三阶行列式,容易验证:可见一个三阶行列式可以转化成三个二阶行列式的计算.问题:一个n阶行列式是否可以转化为假如干个n1阶行列式来计算?一、余子式与代数余子式定义:在阶行列式中,划去元素所在的第行和第列,余下的元素按原来的顺序构成的阶行列式,称为元素的余子式,记作;而称为元素的代数余子式.例如 三阶行列式 中元素的余子式为元素的代数余子式为四阶行列式中元素的代数余子式为二、行列式按行列展开定理阶行列式等于它的任意一行列的各元素与其对应的代数余子式的乘积之和,即证1元素位于第一行、第一列,而该行其余元素均为零;此时而,故; 2将中第行依次与前行对调,调换次后位于第一行;将中第列依次与前列对调,调换次后位于第一列;经次对调后,就位于第一行、第一列,即.(3)一般地.推论 n阶行列式的任意一行列的各元素与另一行列对应的代数余子式的乘积之和为零,即证 考虑辅助行列式该行列式中有两列对应元素相等.而,所以.关于代数余子式的重要性质在计算数字行列式时,直接应用行列式展开公式并不一定简化计算,因为把一个n阶行列式换成n个n1阶行列式的计算并不减少计算量,只是在行列式中某一行或某一列含有较多的零时,应用展开定理才有意义.但展开定理在理论上是重要的.三、行列式的计算利用行列式按行按列展开定理,并结合行列式性质,可简化行列式计算:计算行列式时,可先用行列式的性质将某一行列化为仅含1个非零元素,再按此行列展开,变为低一阶的行列式,如此继续下去,直到化为三阶或二阶行列式.计算行列式常用方法:化零,展开.例4: 计算四阶行列式.解: .例5 4阶行列式解:(方法1) 直接计算(方法2)利用行列式的按列展开定理,简化计算.例6: 计算阶行列式解:.例7: 计算四阶行列式.解: 按第1行展开,有,对等式右端的两个3阶行列式都按第3行展开,得.例8: 证明X得蒙行列式Vandermonde),其中表示所有可能的的乘积.证: (用数学归纳法)时,结论正确;假设对n-1X得蒙行列式结论成立,以下考虑阶情形.例9 用X德蒙行列式计算4阶行列式解 :对照X德蒙行列式,此处所以有.第三环节:课堂练习练习:4阶行列式解:(方法1) 直接计算(方法2)利用行列式的按列展开定理,简化计算.它是中第2列元素与第4列元素的代数余子式的乘积之和,故有

    注意事项

    本文(线性代数之行列式地性质及计算.doc)为本站会员(夺命阿水)主动上传,课桌文档仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知课桌文档(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-1

    经营许可证:宁B2-20210002

    宁公网安备 64010402000986号

    课桌文档
    收起
    展开