欢迎来到课桌文档! | 帮助中心 课桌文档-建筑工程资料库
课桌文档
全部分类
  • 党建之窗>
  • 感悟体会>
  • 百家争鸣>
  • 教育整顿>
  • 文笔提升>
  • 热门分类>
  • 计划总结>
  • 致辞演讲>
  • 在线阅读>
  • ImageVerifierCode 换一换
    首页 课桌文档 > 资源分类 > DOC文档下载  

    因式分解最牛全面的方法.doc

    • 资源ID:17647       资源大小:536KB        全文页数:8页
    • 资源格式: DOC        下载积分:10金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要10金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    因式分解最牛全面的方法.doc

    word因式分解一、提公因式法.:ma+mb+mc=m(a+b+c)二、运用公式法.在整式的乘、除中,我们学过假如干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如:(1) (a+b)(a-b) = a2-b2a2-b2=(a+b)(a-b);(2)(a±b)2=a2±2ab+b2a2±2ab+b2=(a±b)2;(3)(a+b)(a2-ab+b2) =a3+b3a3+b3=(a+b)(a2-ab+b2);(4)(a-b)(a2+ab+b2) = a3-b3a3-b3=(a-b)(a2+ab+b2)下面再补充两个常用的公式:(5)a2+b2+c2+2ab+2bc+2ca=(a+b+c)2;(6)a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca);是的三边,且,如此的形状是 A.直角三角形 B等腰三角形 C 等边三角形 D等腰直角三角形解:三、分组分解法.一分组后能直接提公因式例1、分解因式:分析:从“整体看,这个多项式的各项既没有公因式可提,也不能运用公式分解,但从“局部看,这个多项式前两项都含有a,后两项都含有b,因此可以考虑将前两项分为一组,后两项分为一组先分解,然后再考虑两组之间的联系。解:原式= = 每组之间还有公因式! =例2、分解因式:解法一:第一、二项为一组; 解法二:第一、四项为一组;第三、四项为一组。 第二、三项为一组。解:原式= 原式= = = = =二分组后能直接运用公式例3、分解因式:分析:假如将第一、三项分为一组,第二、四项分为一组,虽然可以提公因式,但提完后就能继续分解,所以只能另外分组。 解:原式= = =例4: 分解因式: 解:原式= = =四、十字相乘法.一二次项系数为1的二次三项式直接利用公式进展分解。特点:1二次项系数是1; 2常数项是两个数的乘积;3一次项系数是常数项的两因数的和。思考:十字相乘有什么根本规律?05,且为整数,假如能用十字相乘法分解因式,求符合条件的.解析:但凡能十字相乘的二次三项式ax2+bx+c,都要求>0而且是一个完全平方数。于是为完全平方数,例5、分解因式:分析:将6分成两个数相乘,且这两个数的和要等于5。 由于6=2×3=(-2)×(-3)=1×6=(-1)×(-6),从中可以发现只有2×3的分解适合,即2+3=5。 1 2解:= 1 3 = 1×2+1×3=5用此方法进展分解的关键:将常数项分解成两个因数的积,且这两个因数的代数和要等于一次项的系数。例6、分解因式:解:原式= 1 -1 = 1 -6 -1+-6= -7二二次项系数不为1的二次三项式条件:123分解结果:=例7、分解因式:分析: 1 -2 3 -5 -6+-5= -11解:=三二次项系数为1的齐次多项式例8、分解因式:分析:将看成常数,把原多项式看成关于的二次三项式,利用十字相乘法进展分解。 1 8b 1 -16b 8b+(-16b)= -8b 解:= =四二次项系数不为1的齐次多项式 1 -2y 把看作一个整体 1 -1 2 -3y 1-2 (-3y)+(-4y)= -7y (-1)+(-2)= -3解:原式=解:原式=五、换元法例13、分解因式12解:1设2005=,如此原式= = =2型如的多项式,分解因式时可以把四个因式两两分组相乘。原式=设,如此原式= =观察:此多项式的特点是关于的降幂排列,每一项的次数依次少1,并且系数成“轴对称。这种多项式属于“等距离多项式。方法:提中间项的字母和它的次数,保存系数,然后再用换元法。解:原式=设,如此原式= = = =2解:原式=设,如此原式= =六、添项、拆项、配方法例15、分解因式1解法1拆项 解法2添项原式=原式= =2解:原式=七、待定系数法。例16、分解因式分析:原式的前3项可以分为,如此原多项式必定可分为解:设=比照左右两边一样项的系数可得,解得原式=例17、1当为何值时,多项式能分解因式,并分解此多项式。2如果有两个因式为和,求的值。1分析:前两项可以分解为,故此多项式分解的形式必为解:设=如此=比拟对应的系数可得:,解得:或当时,原多项式可以分解;当时,原式=;当时,原式=2分析:是一个三次式,所以它应该分成三个一次式相乘,因此第三个因式必为形如的一次二项式。解:设=如此=解得,=21 1. 通过根本思路达到分解多项式的目的例1. 分解因式分析:这是一个六项式,很显然要先进展分组,此题可把分别看成一组,此时六项式变成二项式,提取公因式后,再进一步分解;也可把,分别看成一组,此时的六项式变成三项式,提取公因式后再进展分解。解一:原式解二:原式= 2. 通过变形达到分解的目的例1. 分解因式解一:将拆成,如此有解二:将常数拆成,如此有 3. 在证明题中的应用例:求证:多项式的值一定是非负数分析:现阶段我们学习了两个非负数,它们是完全平方数、绝对值。此题要证明这个多项式是非负数,需要变形成完全平方数。证明:设,如此 4. 因式分解中的转化思想例:分解因式:分析:此题假如直接用公式法分解,过程很复杂,观察a+b,b+c与a+2b+c的关系,努力寻找一种代换的方法。解:设a+b=A,b+c=B,a+2b+c=A+B在分解因式时,灵活运用公式,对原式进展“代换是很重要的。例1.在中,三边a,b,c满足求证:证明:说明:此题是代数、几何的综合题,难度不大,学生应掌握这类题不能丢分。例2. :_解:说明:利用等式化繁为易。题型展示 1. 假如x为任意整数,求证:的值不大于100。解:说明:代数证明问题在初二是较为困难的问题。一个多项式的值不大于100,即要求它们的差小于零,把它们的差用因式分解等方法恒等变形成完全平方是一种常用的方法。 2.将解:说明:利用因式分解简化有理数的计算。8 / 8

    注意事项

    本文(因式分解最牛全面的方法.doc)为本站会员(夺命阿水)主动上传,课桌文档仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知课桌文档(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-1

    经营许可证:宁B2-20210002

    宁公网安备 64010402000986号

    课桌文档
    收起
    展开