欢迎来到课桌文档! | 帮助中心 课桌文档-建筑工程资料库
课桌文档
全部分类
  • 党建之窗>
  • 感悟体会>
  • 百家争鸣>
  • 教育整顿>
  • 文笔提升>
  • 热门分类>
  • 计划总结>
  • 致辞演讲>
  • 在线阅读>
  • ImageVerifierCode 换一换
    首页 课桌文档 > 资源分类 > DOCX文档下载  

    第章一元二次方程教案.docx

    • 资源ID:1834127       资源大小:48.20KB        全文页数:21页
    • 资源格式: DOCX        下载积分:5金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要5金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    第章一元二次方程教案.docx

    第二十一章一元二次方程课题:一元二次方程主备人:兰会梅备课成员:秦杰司秀华、郭志萍、孙翠翠、吐尔泥沙古丽加孜一、教学目标:知识技能目标:了解一元二次方程的概念;一般式a2+bx+c=0(a0)与其派生的概念;应用一元二次方程概念解决一些简单题目.方法与过程目标:通过设置问题,建立数学模型,模仿一元一次方程概念给一元二次方程下定义;情感目标:通过生活学习数学,并用数学解决生活中的问题来激发学生的学习热情.二、教学重点:一元二次方程的概念与其一般形式和一元二次方程的有关概念并用这些概念解决问题。三、教学难点:通过提出问题,建立一元二次方程的数学模型,再由一元一次方程的概念迁移到一元二次方程的概念.四、教具准备:多媒体课件五、授课类型;新授课六、课时安排:1课时八、教学过程复备栏-、情境引学学生活动:列方程.问题(I)古算趣题:“执竿进屋”笨人执竿要进屋,无奈门框拦住竹,横多四尺竖多二,没法急得放声哭。有个邻居聪明者,教他斜竿对两角,笨伯依言试一试,不多不少刚抵足。借问竿长多少数,谁人算出我佩服。如果假设门的高为X尺,则,这个门的宽为尺,长为尺,根据题意,得.整理、化简,得:.二、自主探学学生活动:请口答下面问题.(1)上面三个方程整理后含有几个未知数?(2)按照整式中的多项式的规定,它们最高次数是几次?(3)有等号吗?还是与多项式一样只有式子?老师点评:(1)都只含一个未知数x;(2)它们的最高次数都是2次的;(3)都有等号,是方程.因此,像这样的方程两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程.一般地,任何一个关于X的一元二次方程,经过整理,都能化成如下形式a2+bx+c=0(a0).这种形式叫做一元二次方程的一般形式.一个一元二次方程经过整理化成ax2+bx+c=0(a0)后,其中ax?是二次项,a是二次项系数;bx是一次项,b是一次项系数;C是常数项.三、合作研学例1.将方程3x(-1.)=5(x+2)化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数与常数项.分析:一元二次方程的一般形式是ax2÷bx+c=0(a0).因此,方程3x(-1.)=5(x+2)必须运用整式运算进行整理,包括去括号、移项等.解:略注意:二次项、二次项系数、一次项、一次项系数、常数项都包括前面的符号.例2.(学生活动:请二至三位同学上台演练)将方程(x+1.)2+(-2)(x+2)=1化成一元二次方程的一般形式,并写出其中的二次项、二次项系数;一次项、一次项系数;常数项.分析:通过完全平方公式和平方差公式把(x+1.)2+(-2)(x+2)化成ax)x+c=O(a0)的形式.五、当堂检学例3.求证:关于X的方程(布-8m+17)x2+2mx+1.=0,不论m取何值,该方程都是一元二次方程.分析:要证明不论m取何值,该方程都是一元二次方程,只要证明m?-8m+170即可.证明:m2-8m+17=(m-4)2+1.(m-4)20/.(m-4)2+1.>0,即(m-4)2+1.0不论m取何值,该方程都是一元二次方程.练习:1,方程(2a4)X22bx+a=0,在什么条件下此方程为一元二次方程?在什么条件下此方程为一元一次方程?2.当m为何值时,方程(m+1.)x/4m/-4+27mx+5=0是关于的一元二次方程九、归纳小结:本节课要掌握:(1)一元二次方程的概念;(2)一元二次方程的一般形式a4bx+c=O(a0)和二次项、二次项系数,一次项、一次项系数,常数项的概念与其它们的运用.十、作业布置:十一、板书设计:十二、教学反思:课题:配方法主备人:兰会梅备课成员:司秀华、郭志萍、孙翠翠、秦杰吐尔泥沙古丽加孜一、教学目标:知识技能目标理解一元二次方程“降次”转化的数学思想,并能应用它解决一些具体问题.过程性目标提出问题,列出缺一次项的一元二次方程a2+c=0,根据平方根的意义解出这个方程,然后知识迁移到解a(ex+f)2+c=0型的一元二次方程.情感目标:结合图象寻求一次函数解析式的求法,感受求函数解析式和解方程组间的转化.二、教学重点:运用开平方法解形如(x+11)2=n(n0)的方程;领会降次一一转化的数学思想.三、教学难点:通过根据平方根的意义解形如2=n,知识迁移到根据平方根的意义解形如(x+m)2=n(n0)的方程。四、教具准备:多媒体课件五、授课类型;新授课六、课时安排:1课时八、教学过程复备栏一、情境引学学生活动:请同学们完成下列各题问题1.填空(1)x2-8x+=(-)2;(2)9x2+12x+=(3x+)2;(3)x2+px+=(x+)2.问题1.根据完全平方公式可得:(1)164;(2)42;(3)(R)21.22问题2:目前我们都学过哪些方程二元怎样转化成一元?一元二次方程于一元一次方程有什么不同?二次如何转化成一次?怎样降次?以前学过哪些降次的方法?二、自主探学上面我们已经讲了2=9,根据平方根的意义,直接开平方得x=±3,如果X换元为2t+1.,即(2t+1.)=9,能否也用直接开平方的方法求解呢?(学生分组讨论)老师点评:回答是肯定的,把2t+1.变为上面的X,则2t+1.=±3即2t+1.=3,2t+1.=-3方程的两根为如=1,t2=-2三、合作研学例1:解方程:(1)(2-1.)2=5(2)x2+6x+9=2(3)X2-2x+4=-1分析:很清楚,2+4x+4是一个完全平方公式,则原方程就转化为(x+2)2=1.解:(2)由已知,得:(x+3)2=2直接开平方,得:x+3=±2即x+3=2,x+3=-2所以,方程的两根X=-3+,x2=-3-2例2.市政府计划2年内将人均住房面积由现在的IonI2提高到14411i,求每年人均住房面积增长率.分析:设每年人均住房面积增长率为x.一年后人均住房面积就应该是10+10x=10(1.+x);二年后人均住房面积就应该是10(1.+x)+10(1.+x)x=10(1.+x)2解:设每年人均住房面积增长率为X,则:10(1.+x)=14.4(1.+x)=1.44直接开平方,得1.+x=±1.2即1.+x=1.2,1.+x=-1.2所以,方程的两根是X=02=20%,x2=-2.2因为每年人均住房面积的增长率应为正的,因此,X2=-2.2应舍去.所以,每年人均住房面积增长率应为20%.四.变换拓学例3.某公司一月份营业额为1万元,第一季度总营业额为3.31万元,求该公司二、三月份营业额平均增长率是多少?分析:设该公司二、三月份营业额平均增长率为X,则二月份的营业额就应该是(1.+),三月份的营业额是在二月份的基础上再增长的,应是(1.+)2.解:设该公司二、三月份营业额平均增长率为x.则1+(1.+x)+(1.+x)=3.31把(1.+)当成一个数,配方得:(1.+x+-)2=2.56,即(x+-)2=2.5622x+-=+1.6,SPx+-=1.6,x+-=-1.6222方程的根为x=10%,x2=-3.1因为增长率为正数,所以该公司二、三月份营业额平均增长率为10%.五、当堂检学市政府计划2年内将人均住房面积由现在的IOnI2提高到14.4m,求每年人均住房面积增长率.分析:设每年人均住房面积增长率为x.一年后人均住房面积就应该是10+10x=10(1.+x);二年后人均住房面积就应该是10(1.+x)+10(1.+x)x=10(1.+x)2解:设每年人均住房面积增长率为X,则:10(1.+x)=14.4(1.+x)=1.44直接开平方,得1.+x=±1.2即1.+x=1.2,1.+x=-1.2所以,方程的两根是xk2=20%,x2=-2.2因为每年人均住房面积的增长率应为正的,因此,X2=_2.2应舍去.所以,每年人均住房面积增长率应为20%.九、归纳小结:本节课应掌握:由应用直接开平方法解形如X2=P(P三0),则=±F转化为应用直接开平方法解形如(mx+n)2=p(p0),则11x+n=±后,达到降次转化之目的.若p<0则方程无解十、作业布置:卜一、板书设计:十二、教学反思:课题:公式法主备人:兰会梅备课成员:司秀华、郭志萍、孙翠翠、秦杰吐尔泥沙古丽加孜教学目标:1、知识技能目标理解一元二次方程求根公式的推导过程,了解公式法的概念,会熟练应用公式法解一元二次方程.2、方法与过程目标复习具体数字的一元二次方程配方法的解题过程,引入ax2+bx+c=0(aW0)的求根公式的推导公式,并应用公式法解一元二次方程.3、情感态度价值观能运用函数的图象来解释一元一次方程、一元一次不等式的解集,并能通过函数图象来回答一元一次方程、一元一次不等式的解集.二、教学重点:求根公式的推导和公式法的应用。三、教学难点:一元二次方程求根公式法的推导。四、教具准备:多媒体课件五、授课类型:新授课六、课时安排:1课时七、备课时间:八、教学过程复备栏一、情境引学1 .前面我们学习过解一元二次方程的“直接开平方法”,比如,方程(1) x2=4(2)(X-2)=7提问1这种解法的(理论)依据是什么?提问2这种解法的局限性是什么?(只对那种“平方式等于非负数”的特殊二次方程有效,不能实施于一般形式的二次方程。)2.面对这种局限性,怎么办?(使用配方法,把一般形式的二次方程配方成能够“直接开平方”的形式。)(学生活动)用配方法解方程2x2÷3=7x(老师点评)略总结用配方法解一元二次方程的步骤(学生总结,老师点评).(1)现将已知方程化为一般形式;(2)化二次项系数为1;(3)常数项移到右边;(4)方程两边都加上一次项系数的一半的平方,使fP成一个字全平方式(5)变形为(x+p)2=q的形式,如果心0,方程的根是X=-p±q;如果q<0,方程无实根.二、自主探学用配方法解方程(1)ax2-7x+3=0(2)ax2+bx+3=0(3)如果这个一元二次方程是一般形式ax2+bx+c=0(a0),你能否用上面配方法的步骤求出它们的两根,请同学独立完成下面这个问题.问题:已知ax2+bx+c=0(a0),试推导它的两个根Xk土妇心竺,X2=Hac(这个方程一定有解2a2a吗什么情况下有解?)分析:因为前面具体数字已做得很多,我们现在不妨把a、b、c也当成一个具体数字,根据上面的解题步骤就可以一直推下去.解:移项,得:ax2+bx=-c二次项系数化为I,得2+2>gaa配方,得:x2+-x+()-+()2a2aa2a即(+92=V4a2>0,4a2>0,当b?-4acN0时“-而'NO4a8_+yb2-4ac2a2a直接开平方,得:-b±Jb2-Aac2a_-b-b2-4acXi,2a由上可知,一元二次方程a2+bx+c=0(a0)的根由方程的系数a、b、C而定,因此:(1)解一元二次方程时,可以先将方程化为一般形式ax,bx+c=。,当b?-4ac三0时,将a、b、C代入式子X二士严三就得到方程的根.(公式所出现的运算,2a恰好包括了所学过的六中运算,力口、减、乘、除、乘方、开方,这体现了公式的统一性与和谐性。)(2)这个式子叫做一元二次方程的求根公式.(3)利用求根公式解一元二次方程的方法叫公式法.公式的理解(4)由求根公式可知,一元二次方程最多有两个实数根.三、合作研学例1.用公式法解下列方程.(1)2x2-1.=0(2)x2+1.5=-3x(3)x22x+1=0(4)4x2-3x+2=02分析:用公式法解一元二次方程,首先应把它化为一般形式,然后代入公式即可.补:(5)(-2)(3-5)=O四.变换拓学例2.某数学兴趣小组对关于X的方程(m+1.)w2÷2+(m-2)XTR提出了下列问题.(1)若使方程为一元二次方程,11是否存在?若存在,求出口并解此方程.(2)若使方程为一元二次方程m是否存在?若存在,请求出.你能解决这个问题吗?分析:能.(1)要使它为一元二次方程,必须满足m2+1.=2,同时还要满足(m+1.)0.(2)要使它为一元一次方程,必须满足:/+=或疗+I=。或利?+1=°(m+1.)+(m-2)0m-2Om-2O五、当堂检学教材P42练习1.(1)、(3)、(5)或(2)、(4)、(6)九、归纳小结:本节课应掌握:(1)求根公式的概念与其推导过程;(2)公式法的概念;(3)应用公式法解一元二次方程的步骤:1)将所给的方程变成一般形式,注意移项要变号,尽量让a>02)找出系数a,b,c,注意各项的系数包括符号。3)计算b2-4ac,若结果为负数,方程无解,4)若结果为非负数,代入求根公式,算出结果。(4)初步了解一元二次方程根的情况.十、作业布置:十一、板书设计:十二、教学反思:课题:因式分解法主备人:兰会梅备课成员:司秀华、郭志萍、孙翠翠、秦杰吐尔泥沙古丽加孜教学目标:一、知识技能目标1.掌握用因式分解法解一元二次方程.二、方法与过程目标1 .通过复习用配方法、公式法解一元二次方程,体会和探寻用更简单的方法因式分解法解一元二次方程,并应用因式分解法解决一些具体问题.三、情感态度价值观使学生体会到二元一次方程组的解是两条直线的交点坐标,能通过图象法来求二元一次方程组的解.二、教学重点:用因式分解法解一元二次方程.三、教学难点:让学生通过比较解一元二次方程的多种方法感悟用因式分解法使解题简便.四、教具准备:多媒体课件五、授课类型:新授课六、课时安排:1课时七、备课时间:八、教学过程复备栏教学过程1、情境引学学生活动)解下列方程.(1)2x2+x=0(用配方法)(2)3x2+6x=0(用公式法)老师点评:(1)配方法将方程两边同除以2后,X前面的系数应为1.,1.的一半应为J_,因此,应加上(1.)22442,同时减去(1.)2.(2)直接用公式求解.42、自主探学(学生活动)请同学们口答下面各题.(老师提问)(1)上面两个方程中有没有常数项?(2)等式左边的各项有没有共同因式?(学生先答,老师解答)上面两个方程中都没有常数项;左边都可以因式分解:因此,上面两个方程都可以写成:(1) X(2x+1.)=0(2)3x(x+2)=0因为两个因式乘积要等于0,至少其中一个因式要等于0,也就是(1)X=O或2x+1.=0,所以X=0,X2=-.2(2) 3x=0或x+2=0,所以X=0,x2=-2.(以上解法是如何实现降次的?)因此,我们可以发现,上述两个方程中,其解法都不是用开平方降次,而是先因式分解使方程化为两个一次式的乘积等于0的形式,再使这两个一次式分别等于0,从而实现降次,这种解法叫做因式分解法.3、合作研学例1.解方程(1)10-4.9X2=0(2)x(-2)+-2=0(3) 5x2-2-=x2-2x+-44(4) (-1.)2=(3-2x)2思考:使用因式分解法解一元二次方程的条件是什么?解:略(方程一边为3另一边可分解为两个一次因式乘积。)练习:1.下面一元二次方程解法中,正确的是().A. (-3)(-5)=10×2,-3=10,-5=2,x=13,x2=7B. (2-5x)+(5-2)=O,/.(5-2)(5-3)八2_3X1,X2-C. (x+2)2+4x=0,xi=2,x2=2D. x2=x两边同除以X,得x二1.4、变换拓学例2我们知道x?-(a+b)x+ab=(-a)(-b),则/-(a+b)x+ab=O就可转化为(x-a)(-b)=0,请你用上面的方法解下列方程.(1)x2-3x-4=0(2)x2-7x+6=0(3)x2+4-5=0分析:二次三项式X,-(a+b)x+ab的最大特点是一项是由XX而成,常数项ab是由-a(-b)而成的,而一次项是由-ax+(-bx)交叉相乘而成的.根据上面的分析,我们可以对上面的三题分解因式.5、当堂检学例3.已知9a2-4b2=0,求代数式的值.baab分析:要求-d的值,首先要对它进行化简,然后从已知条件入手,求出a与b的关系后代入,但也可以直接代入,因计算量比较大,比较容易发生错误.解:原式二片一二一片一"、_殳abaV9a2-4b2=0/.(3a+2b)(3a-2b)=03a+2b=0或3a-2b=0,a=-b或a=-b33当a2b时,原式二-半二33-b3当a=-b时,原式二一3.3九、归纳小结:本节课要掌握:(1)用因式分解法,即用提取公因式法、十字相乘法等解一元二次方程与其应用.(2)因式分解法要使方程一边为两个一次因式相乘,另一边为0,再分别使各一次因式等于十、作业布置:十-、板书设计:十二、教学反思:课题:一元二次方程与系数的关系主备人:兰会梅备课成员:司秀华、郭志萍、孙翠翠、秦杰吐尔泥沙古丽加孜一、教学目标:1、知识技能目标理解根系关系的推导过程;2、方法与过程目标掌握不解方程,应用根系关系解题的方法;3、情感态度价值观体会从特殊到一般,再有一般到特殊的推导思路。二、教学重点:应用根系关系解决问题;三、教学难点:根系关系的推导过程四、教具准备:多媒体课件五、授课类型:新授课六、课时安排:1课时七、备课时间:八、教学过程复备栏教学过程1、情境引学-、问题前2天悄悄地听到咱班的郑帅和董沐青的一段对话,内容如下:关B:我说董沐青,我有一个秘密,你想听吗?董:什么秘密?关你知道咱们可爱的张老师年龄到底有多大吗?董:哦?关B:呵呵,这绝对是个秘密,我不能直接告诉你,我这么说吧:她的年龄啊是方程X?-12x+35=O的两根的积,回去你把2根求出来就知道了.董:咳,你难不住我,我不用求根就已经知道答案了,而且我还告诉你,张老师的年龄啊还是方程X2-35x-200=0的2根的和呢.关哈哈,你太有才了。对了,咱们应该也让同学猜一猜,不解方程,能不能求出张老师的年龄.2、自主探学二、求出下列方程的2根,计算2根和与2根积的值,并猜想2根和、2根积与一元二次方程各项系数之间的关系序号一元二次方程XiX2X+x2XiX2(1)X2-5x+6=02356(2)2x2-3x+1=0121322(3)3x2+X-2=023-1_1一3_2一33、合作研学Xi和X2是一元二次方程ax2+bx+c=O(a0,b2-4ac0)hcx1+x2=-,X1X2=-注意:负号不能漏写aa第一组习题:不解方程,求下列方程的2根和与2根积(1) X2-3x+1=0(2) 3x2-2x-2=0(3) 2x2-3x=0(4) 3x2=14、当堂检学例2:已知:Xi和X2是一元二次方程X2-4x+1=0的2根,求下列代数式的值(1) -+-XiX2(2) Xi2+x22(3) (x-x2)2学生练习:(1)0+-XiX2(2) (x+1.)(x2+1.)九、归纳小结:1.研究根系关系应掌握的内容,还可以让学生进一步体会整体代入的数学思想方法.十、作业布置:十二、板书设计:十二、教学反思:课题:实际问题与一元二次方程主备人:兰会梅备课成员:司秀华、郭志萍、孙翠翠、秦杰吐尔泥沙古丽加孜教学目标:一、知识技能目标1.掌握用“倍数关系”建立数学模型,并利用它解决一些具体问题.二、方法与过程目标1 .通过复习二元一次方程组等建立数学模型,并利用它解决实际问题,引入用“倍数关系”建立数学模型,并利用它解决实际问题.三、情感态度价值观使学生体会到二元一次方程组的解是两条直线的交点坐标,能通过图象法来求二元一次方程组的解.二、教学重点:用“倍数关系”建立数学模型。三、教学难点:用“倍数关系”建立数学模型。四、教具准备:多媒体课件五、授课类型:新授课六、课时安排:1课时七、备课时间:八、教学过程复备栏教学过程1、情境引学(学生活动)问题1:列一元一次方程解应用题的步骤?审题,设出未知数.找等量关系.列方程,解方程,答.2、自主探学上面这道题大家都做得很好,这是一种利用一元一次方程的数量关系建立的数学模型,则还有没有利用其它形式,也就是利用我们前面所学过的一元二次方程建立数学模型解应用题呢?请同学们完成下面问题.(学生活动)探究1:有一人患了流感,经过两轮传染后共有121人患了流感,每轮传染中平均一个人传染了几个人分析:1第一轮传染1+x第二轮传染后1.+x+x(1.+x)解:设每轮传染中平均一个人传染了X个人,则第一轮后共有人患了流感,第二轮后共有人患了流感.列方程得1.+x+x(x+1.)=121x2+2x-120=0解方程,得=-12,2=10根据问题的实际意义,=10答:每轮传染中平均一个人传染了10个人.思考:按照这样的传染速度,三轮传染后有多少人患流感(121+121X10=1331)通过对这个问题的探究,你对类似的传播问题中的数量关系有新的认识吗(后一轮被传染的人数前一轮患病人数的X倍)烈已于3、合作研学探究2两年前生产1吨甲种药品的成本是5000元,生产1吨乙种药品的成本是6000元,随着生产技术的进步,现在生产1吨甲种药品的成本是3000元,生产1吨乙种药品的成本是3600元,哪种药品成本的年平均下降率较大分析:甲种药品成本的年平均下降额为(5000-3000)+2=100O(元)乙种药品成本的年平均下降额为(6000-3600)÷2=1200(元)乙种药品成本的年平均下降额较大但是,年平均下降额(元)不等同于年平均下降率解:设甲种药品成本的年平均下降率为X,则一年后甲种药品成本为5000(1-x)元,两年后甲种药品成本为5000(1.-)2元,依题意得5000(1.-)2=3000解方程,得%0.225,21.775(不合题意,舍去)答:甲种药品成本的年平均下降率约为22.5%.算一算:乙种药品成本的年平均下降率是多少比较:两种药品成本的年平均下降率(22.5%,相同)思考:经过计算,你能得出什么结论成本下降额较大的药品,它的成本下降率一定也较大吗应怎样全面地比较对象的变化状况(经过计算,成本下降额较大的药品,它的成本下降率不一定较大,应比较降前与降后的价格.)4、变换拓学例2我们知道x?-(a+b)x+ab=(-a)(-b),则x2-(a+b)x+ab=0就可转化为(x-a)(x-b)=0,请你用上面的方法解下列方程.(1)x2-3x-4=0(2)x2-7x+6=0(3)x2+4-5=0分析:二次三项式六-(a+b)x+ab的最大特点是x?项是由XX而成,常数项ab是由-a(-b)而成的,而一次项是由-ax+(-bx)交叉相乘而成的.根据上面的分析,我们可以对上面的三题分解因式.5、当堂检学例3.1.某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干,支干和小分支的总数是91,每个支干长出多少小分支解:设每个支干长出X个小分支,则1.+x+x.x=91即x2+-90=0解得x1.=9,x2=-10(不合题意,舍去)答:每个支干长出9个小分支.2.要组织一场篮球联赛,每两队之间都赛2场,计划安排90场比赛,应邀请多少个球队参加比赛九、归纳小结:1.利用“倍数关系”建立关于一元二次方程的数学模型,并利用恰当方法解它.列一元二次方程解一元二次方程的一般步骤(1)审(2)设(3)列(4)解(5)验一一检验方程的解是否符合题意,将不符合题意的解舍去。(6)答。十、作业布置:十三、板书设计:十二、教学反思:

    注意事项

    本文(第章一元二次方程教案.docx)为本站会员(夺命阿水)主动上传,课桌文档仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知课桌文档(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-1

    经营许可证:宁B2-20210002

    宁公网安备 64010402000986号

    课桌文档
    收起
    展开