欢迎来到课桌文档! | 帮助中心 课桌文档-建筑工程资料库
课桌文档
全部分类
  • 党建之窗>
  • 感悟体会>
  • 百家争鸣>
  • 教育整顿>
  • 文笔提升>
  • 热门分类>
  • 计划总结>
  • 致辞演讲>
  • 在线阅读>
  • ImageVerifierCode 换一换
    首页 课桌文档 > 资源分类 > DOCX文档下载  

    人教版初中数学第十八章平行四边形知识点.docx

    • 资源ID:19962       资源大小:115.87KB        全文页数:6页
    • 资源格式: DOCX        下载积分:10金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要10金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    人教版初中数学第十八章平行四边形知识点.docx

    第十八章平行四边形18.1 平行四边形平行四边形定义:两组对边分别平行的四边形叫做平行四边形.平行四边形用""表示,读作"平行四边形".平行四边形ABCD记作"ABCD".18.1.1 平行四边形的性质平行四边形是中心对称图形,对称中心是两条对角线的交点.例、已知:ABCD求证:AD=BC,AB=DC;A=C,B=D.证明:连接AC,又AC是ABC和CDA的公共边,ABCCDA,平行四边形性质1:平行四边形的两组对边分别相等.平行四边形性质2:平行四边形的两组对角分别相等.例、已知:如图:ABCD的对角线AC、BD相交于点O.求证:OA=OC,OB=OD. 证明:四边形ABCD是平行四边形 AD=BC,ADBC.1=2,3=4.AODCOBASA. OA=OC,OB=OD.平行线之间的距离定义:若两条直线互相平行,则其中一条直线上任意一点到另一条直线的距离,叫做这两条平行线之间的距离.平行线之间的距离特征1:平行线之间的距离处处相等.平行线之间的距离特征2:夹在两条平行线之间的平行线段相等.平行四边形性质3:平行四边形的两条对角线互相平分.例、如图, ABCD中,BDAB,AB=12cm,AC=26cm,求AD、BD长解:四边形ABCD是平行四边形,AO=CO=AC,OB=ODBDAB,在RtABO中,AB=12cm,AO=13cmBO=BD=2B0=10cm在RtABD中,AB=12cm,BD=10cmAD=<cm>例、如图,在ABCD中,已知对角线AC和BD相交于点O,AOB的周长为25,AB=12,求对角线AC与BD的和.解:AOB的周长为25,OA+BO+AB=25,又AB=12,AO+OB=25-12=13,平行四边形的对角线互相平分,AC+BD=2OA+2OB=2<0A+OB>=2×13=2618.1.2 平行四边形的判定平行四边形判定1:两组对边分别平行的四边形是平行四边形.平行四边形判定2:两组对边分别相等的四边形是平行四边形.平行四边形判定3:两组对角分别相等的四边形是平行四边形.平行四边形判定4:两条对角线互相平分的四边形是平行四边形.平行四边形判定5:一组对边平行且相等的四边形是平行四边形.中位线:连接三角形两边中点的线段叫做三角形的中位线三角形中位线定理:三角形的中位线平行于三角形的第三边,并且等于第三边的一半.例、如图,在ABCD中,已知点E和点F分别在AD和BC上,且AE=CF,连结CE和AF,试说明四边形AFCE是平行四边形.证明:四边形ABCD是平行四边形,AD/BC,点E在AD上,点F在BC上,AE/CF,又AE=CF,四边形AFCE是平行四边形.例、如图,E、F是四边形ABCD的对角线AC上的两点,AF=CE,DF=BE,DFBE求证:1AFDCEB2四边形ABCD是平行四边形解:1DFBE,AFDCEB又AF=CE, DF=BE,AFDCEB2由<1>AFDCEB知AD=BC,DAFBCE ,ADBC ,四边形ABCD是平行四边形例、如图,平行四边形ABCD中,E、F为边AD、BC上的点,且AE=CF,连结AF、EC、BE、DF交于M、N,试说明:MFNE是平行四边形解:四边形ABCD是平行四边形,ADBC, ADBC又AE=CF,ED=FB,四边形AFCE是平行四边形AFEC同理:BEFD四边形MFNE是平行四边形18.2 特殊的平行四边形18.2.1 矩形矩形定义1:有一个角是直角的平行四边形叫做矩形矩形定义2:有三个角是直角的四边形叫做矩形矩形既是中心对称图形又是轴对称图形,对称中心是两条对角线的交点,对称轴是各边的垂直平分线.矩形性质1:矩形的四个角都是直角.矩形性质2:矩形的对角线相等且互相平分.直角三角形的性质:直角三角形斜边上的中线等于斜边的一半矩形判定1:有一个角是直角的平行四边形是矩形.矩形判定2:有三个角是直角的四边形是矩形.矩形判定3:对角线相等的平行四边形是矩形.例、如图,已知AB=AC,AD=AE,DE=BC,且BAD=CAE,求证:四边形BCED是矩形证明:在ABD和ACE中,ABDACE,BD=CE,又DE=BC,四边形BCED为平行四边形.在ACD和ABE中,AC=AB,AB=AE,ADCAEBCD=BE四边形BCED为矩形18.2.2 菱形菱形定义1:有一组邻边相等的平行四边形叫做菱形.菱形定义2:四条边都相等的四边形叫做菱形.菱形既是中心对称图形又是轴对称图形,对称中心是两条对角线的交点,对称轴是对角线所在的直线.菱形性质1:菱形的四条边都相等.菱形性质2:菱形的对角线互相垂直平分.菱形性质3:菱形的每一条对角线平分一组对角.菱形的面积:菱形的面积等于对角线乘积的一半.推广:对角线互相垂直的四边形面积等于对角线乘积的一半.菱形判定1:有一组邻边相等的平行四边形是菱形.菱形判定2:四条边都相等的四边形是菱形.菱形判定3:对角线互相垂直的平行四边形是菱形.菱形判定4:每条对角线平分一组对角的四边形是菱形.18.2.3 正方形正方形定义1:有一组邻边相等的矩形叫做正方形.正方形定义2:有一个角是直角的菱形叫做正方形.正方形定义3:有一组邻边相等并且有一个角是直角的平行四边形叫做正方形.正方形既是中心对称图形又是轴对称图形,对称中心是两条对角线的交点,对称轴是各边的垂直平分线和对角线所在的直线.正方形性质1:正方形的四个角都是直角.正方形性质2:正方形的四条边都相等.正方形性质3:正方形的两条对角线互相垂直平分且相等.正方形判定1:有一组邻边相等的矩形是正方形.正方形判定2:有一个角是直角的菱形是正方形.正方形判定3:有一组邻边相等并且有一个角是直角的平行四边形是正方形.正方形判定4:对角线垂直平分且相等的四边形是正方形.例、如图,四边形ABCD是菱形,对角线AC8 cm , BD6 cm, DHAB于H,求:DH的长.四边形ABCD是菱形,AB=5cm,例、已知:如图,菱形ABCD的周长为16 cm,ABC60°,对角线AC和BD相交于点O,求AC和BD的长.解:菱形ABCD的周长为16cm,AB=BC=4cm,ABC是等边三角形,AC=4cm,AC,BD互相垂直平分,OA=2例、如图,在正方形ABCD中,P为对角线BD上一点,PEBC,垂足为E, PFCD,垂足为F,求证:EFAP证明:连接PC,PEBC,PFCD,四边形ABCD是正方形,PEC=PFC=C=90°,四边形PECF是矩形,PC=EF,P是正方形ABCD对角线上一点,AD=CD,PDA=PDC,在PAD和PCD中, ADCD,PDAPDC,PDPD,PADPCD,PA=PC,EF=AP,例、在ABC中,AB=AC,D是BC的中点,DEAB, DFAC,垂足分别是E,F.试说明:DE=DF解:AB=AC,B=C    DE AB,DF AC    DEBDFC= 90°  D是BC的中点BD=DC    BDECDF  DE=DF.例、如图,ABCD中,AE平分BAD交BC于E,EFAB交AD于F,试问:四边形ABEF是什么图形吗?请说明理由.解:四边形ABEF是菱形理由:四边形ABCD是平行四边形,ADBC,EFAB,四边形ABEF是平行四边形,AE平分BAD,BAE=FAE,ADBC,FAE=AEB,BAE=AEB,AB=BE,ABEF是菱形

    注意事项

    本文(人教版初中数学第十八章平行四边形知识点.docx)为本站会员(夺命阿水)主动上传,课桌文档仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知课桌文档(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-1

    经营许可证:宁B2-20210002

    宁公网安备 64010402000986号

    课桌文档
    收起
    展开