机械设计基础03应力分析.ppt
教学目标,重点难点,教学内容,小结作业,第3章杆件的应力分析,教学目标,教学目标:1.明确应力、应变的概念;2.掌握应力分析方法;3.具有计算杆件基本变形应力的能力。,首页,3.1 应力与应变3.2 轴向拉压杆的应力3.3 剪切变形横截面上的应力 3.4 圆轴扭转时横截面上的剪应力3.5 梁的应力,首页,教学内容,重点:基本变形的应力计算。难点:扭转、弯曲应力分析方法。,首页,重点难点,3.1 应力与应变,返回,应力和应变的概念,3.1.1 应力与应变的概念,1.应力的概念单位面积上的内力称为应力,它表示内力在某点的集度。,平均应力,点应力,(3-1),一般情况下,可将应力分解成垂直于截面的正应力和平行于截面的剪应力(切应力)。在国际单位制中,应力的单位是Pa,1Pa=1N/m2,工程中常用的单位是MPa,1MPa=1N/mm2.除此之外,还有GPa、KPa等。,应力和应变的概念,2.应变的概念只有正应力作用的单元体,发生长度变化,这种单位长度的变形称为线应变。,只有剪应力 作用的单元体,发生角度变化,使相邻邻边的夹角不再是直角,这种变形称为角应变。,应力和应变的概念,3.1.2 胡克定律,当单元体受正应力作用时,只要不超过某一限度,那么正应力就与正应变成正比。即(3-2)这个关系式称为拉压胡克定律。比例系数E称为拉压弹性模量,其物理意义是表明材料抵抗拉压弹性变形的能力。单位常用GPa。钢的E值约为200 GPa。,当单元体受剪应力作用时,只要不超过某一限度,那么剪应力就与正应变成正比。即(3-3)这个关系式称为剪切胡克定律。比例系数G称为剪切弹性模量,又称第二弹性模量,其物理意义是表明材料抵抗剪切弹性变形的能力。单位常用GPa。钢的G值约为80 GPa。,胡克定律,3.2 轴向拉压杆的应力,返回,拉压横截面上应力,3.2.1 横截面上的应力,拉压杆横截面上只有正应力且均匀分布(图3-4b)。即(3-4)式中 横截面上的正应力,MPa;FN横截面上的轴力,N;A横截面面积,mm2。,解:由轴力图(3-13b)可知,,由公式3-4得,由此可知,AB段为危险截面,,拉压横截面上应力,3.3 剪切变形横截面上的应力,返回,3.3.1 剪切横截面上的剪应力,平行于截面的剪力,它所引起的应力也必然平行于截面,称为剪应力。剪应力在剪切面上的实际分布规律比较复杂,工程上通常采用实用计算法,假设剪力在剪切面上是均匀分布的(图3-5c)。即,(3-5),式中:剪应力,MPa;Fs剪力,N;A剪切面积,mm2,剪切横截面上应力,3.3.2 挤压横截面上的挤压应力,连接件在发生剪切变形的同时,在连接件与被连接件的接触面上互相挤压,产生局部塑性变形,甚至发生压溃破坏,这种现象称为挤压(图3-6)。接触面上的压力称为挤压力,它垂直于挤压面。挤压力在挤压面上所引起的应力称为挤压应力。挤压应力在挤压面上的分布规律也比较复杂(图3-7c),同样采用实用计算法,认为挤压应力在挤压面上是均匀分布的。即,挤压横截面上应力,(3-6),式中 Fbc挤压力,N;A挤压面积,mm2。若挤压面为平面,取实际面积。若挤压面是曲面,通常以接触面在直径平面上的投影,即。,挤压横截面上应力,剪切与挤压横截面上应力,解(1)求内力 显然销钉属于双剪(图3-8b),用截面法计算剪力,(2)计算剪应力,(3)计算挤压力 销钉的挤压应力各处相同,,剪切与挤压横截面上应力,3.4 圆轴扭转时横截面上的剪应力,返回,3.4.1 扭转剪应力分布规律及计算公式,1.应力分析(1)实验现象,各圆周线的形状、大小和间距均不变,只是绕轴线相对转过一个角度;各纵向线倾斜了相同的角度,(2)平面假设根据上述现象可作如下假设:变形前为平面的横截面变形后仍保持为平面,这就是圆轴扭转的平面假设。,扭转横截面上应力,(3)结论扭转变形横截面上无正应力,只有垂直于半径的剪应力。所以说扭转变形的实质是剪切。,2.应力计算,(1)变形几何关系,横截面上任一点的剪应变与该点到轴心的距离成正比。,扭转横截面上应力,(2)物理关系,结论:扭转剪应力不仅垂直于半径,而且沿半径按线性分布,指向与扭矩的指向一致(图3-10)。,扭转横截面上应力,(3)静力关系,横截面对圆心的二次极矩,抗扭截面模量,扭转横截面上应力,极惯性矩和抗扭矩,3.3.2 极惯性矩和抗扭矩,1.圆形截面,2.圆环形截面,扭转剪应力计算,3.5 梁的应力(弯曲应力),返回,弯曲梁横截面上应力,3.5.1 梁横截面上的正应力,1.纯弯曲时梁横截面上的应力分析(1)实验现象 横向线变形后仍为直线且垂直于轴线,只是绕某点作相对转动;纵向线由直变弯,缩短、不变、伸长。,(2)平面假设根据上述现象可作如下假设:变形前为平面的横截面变形后仍为平面,且垂直于变形后梁的轴线,只是绕横截面上的某一轴旋转了一个角度,这就是梁纯弯曲的平面假设。,弯曲梁横截面上应力,中间长度不变的纤维层称为中性层,中性层与横截面的交线称为中性轴。横截面就是绕中性轴转动。由于梁的几何形状与载荷是对称的,故中性轴必垂直于横截面的对称轴。,中性层一侧的纤维层缩短有压应力,中性层另一侧的纤维层伸长有拉应力。,(3)结论,(3)结论纯弯曲时梁横截面上没有剪应力,只有正应力。所以说弯曲变形的实质是拉压。,弯曲梁横截面上应力,2.纯弯曲时梁横截面上的应力计算,(1)变形几何关系,(2)物理关系,(3)静力关系,弯曲梁横截面上应力,结论:中性轴必过截面形心。,横截面对中性轴的二次轴矩又称轴惯性矩,抗弯截面模量,弯曲梁横截面上应力,轴惯性矩和抗弯矩,3.5.2 轴惯性矩和抗弯矩,1.轴惯性矩的概念,分别称为整个图形A对y轴和z轴的二次轴矩或轴惯性矩,单位m4为或mm4。,2.矩形截面,如图3-18b所示对于用作跳板的矩形截面轴惯性矩和抗弯矩分别为,轴惯性矩和抗弯矩,3.圆形截面,轴惯性矩和抗弯矩,3.圆环形截面,式中,为内外径之比。,对于工程中常用的各种型钢的 和Wz可查型钢表。,轴惯性矩和抗弯矩,梁弯曲应力计算,解:(1)先求支反力,画出剪力、弯矩图图3-20b图。,竖放时:,对于K点应力,,梁弯曲应力计算,该截面最大应力,(2)横放时,该截面最大应力,由此可见,梁竖放时危险应力小强度高,所以建筑结构的房梁一般都竖放。,梁弯曲应力计算,3.1 应力与应变3.2 轴向拉压杆的应力3.3 剪切变形横截面上的应力 3.4 圆轴扭转时横截面上的剪应力3.5 梁的应力作业 3-1、3、5、6、8、9、11、12,小结作业,首页,