数字电路第二版贾立新1数字逻辑基础复习题解答.doc
. .自我检测题126.12510=11010.0012 =1A.2162100.937510=1100100.1111231011111011012= 137.32 8=95.40625104133.1268=5B.2B16510112×1012=1101112648610=08421BCD=1余3BCD75.1410=0101.000101008421BCD8100100118421BCD=93109基本逻辑运算有与、或、非3种。10两输入与非门输入为01时,输出为1。11两输入或非门输入为01时,输出为0。12逻辑变量和逻辑函数只有0和1 两种取值,而且它们只是表示两种不同的逻辑状态。13当变量ABC为100时,AB+BC=0 ,A+BA+C=_1_。14描述逻辑函数各个变量取值组合和函数值对应关系的表格叫 真值表 。15用与、或、非等运算表示函数中各个变量之间逻辑关系的代数式叫逻辑表达式 。16根据 代入规则可从可得到。17写出函数Z=ABC +A+BCA+C的反函数=。 18逻辑函数表达式F=A+BA+B+CAB+CD+E,则其对偶式F=_AB+ABC+A+BC+DE。19已知,其对偶式F=。20的最简与-或式为Y=。21函数的最小项表达式为Y=m1,3,9,11,12,13,14,15。22约束项是 不会出现 的变量取值所对应的最小项,其值总是等于0。23逻辑函数FA,B,C=M1,3,4,6,7,则FA,B,C=m0,2,5。24VHDL的基本描述语句包括并行语句 和顺序语句。25VHDL的并行语句在结构体中的执行是并行的,其执行方式与语句书写的顺序无关。26在VHDL的各种并行语句之间,可以用信号来交换信息。27VHDL的PROCESS进程语句是由顺序语句组成的,但其本身却是 并行语句 。28VHDL顺序语句只能出现在进程语句部,是按程序书写的顺序自上而下、一条一条地执行。29VHDL的数据对象包括常数、变量和信号,它们是用来存放各种类型数据的容器。30下列各组数中,是6进制的是。A14752 B62936 C53452 D3748131已知二进制数11001010,其对应的十进制数为。A202 B192 C106 D9232十进制数62对应的十六进制数是。A3E16B3616C3816D3D1633和二进制数1100110111.0012等值的十六进制数是。A337.216B637.116C1467.116 DC37.41634下列四个数中与十进制数16310不相等的是。AA316B101000112 C18421BCDD100100011835下列数中最大数是。A1001011102B12F16C30110D100101118421BCD36和八进制数1668等值的十六进制数和十进制数分别为。A76H,118DB76H,142DCE6H,230DD74H,116D37已知A=10.4410,下列结果正确的是。A A=1010.12BA=0A.816CA=12.48DA=20.21538表示任意两位无符号十进制数需要位二进制数。A6 B7 C8 D9 39用0、1两个符号对100个信息进行编码,则至少需要。A8位B7位 C9位 D6位40相邻两组编码只有一位不同的编码是。A2421BCD码B8421BCD码C余3码D格雷码41下列几种说法中与BCD码的性质不符的是。A一组4位二进制数组成的码只能表示一位十进制数BBCD码是一种人为选定的09十个数字的代码CBCD码是一组4位二进制数,能表示十六以的任何一个十进制数DBCD码有多种42余3码10111011对应的2421码为。A10001000 B10111011C11101110 D1110101143一个四输入端与非门,使其输出为0的输入变量取值组合有种。A15 B8 C7 D144一个四输入端或非门,使其输出为1的输入变量取值组合有种。A15 B8 C7D145A101101=。AA B C0 D146下列四种类型的逻辑门中,可以用实现与、或、非三种基本运算。A与门 B或门C非门 D与非门47若将一个异或门设输入端为A、B当作反相器使用,则A、B端应连接。AA或B中有一个接高电平;BA或B中有一个接低电平;CA和B并联使用; D不能实现。48下列逻辑代数式中值为0的是。AA ÅABAÅ1CAÅ0D49与逻辑式相等的式子是。AABC B1+BC CAD50下列逻辑等式中不成立的有。ABCD51的最简与-或表达式为。AFABCFA+B+C D都不是52若已知,判断等式成立的最简单方法是依据。A代入规则B对偶规则C反演规则D反演定理53根据反演规则,逻辑函数的反函数=。ABCD54逻辑函数的对偶式F=。ABCD55已知某电路的真值表如表T1.55所示,该电路的逻辑表达式为。AF=CBF=ABCCF=AB+CD都不是表T1.55A B CFA B CF0 0 00 0 10 1 00 1 101011 0 01 0 11 1 01 1 1011156函数F =AB +BC,使F=1的输入ABC组合为。AABC=000 BABC=010 CABC=101DABC=11057已知,下列组合中,可以肯定使F=0。AA =0 , BC=1BB=1,C=1CC=1,D=0DBC=1,D=158在下列各组变量取值中,能使函数FA,B,C,D=m0,1,2,4,6,13的值为l是。A1100B1001C0110D111059以下说法中, 是正确的?A一个逻辑函数全部最小项之和恒等于1B一个逻辑函数全部最大项之和恒等于0C一个逻辑函数全部最小项之积恒等于1D一个逻辑函数全部最大项之积恒等于160标准或-与式是由构成的逻辑表达式。 A与项相或 B最小项相或C最大项相与 D或项相与61逻辑函数F<A,B,C>=m<0,1,4,6>的最简与非-与非式为。ABCD62若ABCDEFGH为最小项,则它有逻辑相邻项个数为。 A8 B82 C28 D1663在四变量卡诺图中有个小方格是"1"。A13 B12 C6 D564VHDL是在年正式推出的。 A1983 B1985 C1987 D198965VHDL的实体部分用来指定设计单元的。输入端口输出端口引脚以上均可66一个实体可以拥有一个或多个。设计实体结构体输入输出67在VHDL的端口声明语句中,用声明端口为输入方向。INOUTINOUTBUFFER68在VHDL的端口声明语句中,用声明端口为具有读功能的输出方向。INOUTINOUTBUFFER69在VHDL标识符命名规则中,以开头的标识符是正确的。A字母B数字C字母或数字D下划线70在VHDL中,目标信号的赋值符号是。A=: B=C := D<=习 题1有人说"五彩缤纷的数字世界全是由0、1及与、或、非组成的。"你如何理解这句话的含义?答:任何复杂的数字电路都可由与、或、非门组成。数字电路处理的都是0、1构成的数字信号。2用4位格雷码表示0、1、2、8、9十个数,其中规定用0000四位代码表示数0,试写出三种格雷码表示形式。解:G3G2G1G0G3G2G1G0G3G2G1G00000000000000001001001000011011011000010010010000110010110011110011110111111111110101101110111101100110001101000100000103书中表1.2-4中列出了多种常见的BCD编码方案。试写出余3循环码的特点,它与余3码有何关系?解:余3循环码的主要特点是任何两个相邻码只有一位不同,它和余3码的关系是:设余3码为B3B2B1B0,余3循环码为G3G2G1G0,可以通过以下规则将余3码转换为余3循环码。1如果B0和B1相同,则G0为0,否则为1;2如果B1和B2相同,则G1为0,否则为1;3如果B2和B3相同,则G2为0,否则为1;4G3和B3相同。4如果存在某组基本运算,使任意逻辑函数FX1,X2,Xn均可用它们表示,则称该组基本运算组成完备集。已知与、或、非三种运算组成完备集,试证明与、异或运算组成完备集。解:将异或门的其中一个输入端接高电平即转化为非门,根据可知,利用与门和非门可以构成或门,因此,与、异或运算可以实现与、或、非三种运算,从而组成完备集。5布尔量A、B、C存在下列关系吗?1已知A+B=A+C,问B=C吗?为什么?2已知AB=AC,问B=C吗?为什么?3已知A+B=A+C且AB=AC,问B=C吗?为什么?4最小项m115与m116可合并。解:1×,因为只要A=1,不管B、C为何值,A+B=A+C即成立,没有必要B=C。2×,不成立,因为只要A=0,不管B、C为何值,AB=AC即成立,没有必要B=C。3,当A=0时,根据A+B=A+C可得B=C;当A=1时,根据AB=AC可得B=C。4×,115=1110011B 116=1110100B逻辑不相邻。6列出逻辑函数的真值表。解:ABCY000000100100011010011011110011107写出如图P1.7所示逻辑电路的与-或表达式,列出真值表。图P1.7 图P1.8解:ABF0000111011108写出如图P1.8所示逻辑电路的与-或表达式,列出真值表。解:表达式真值表A B CF0 0 00 0 10 1 00 1 11 0 01 0 11 1 01 1 1000111009试用与非门实现逻辑函数L=AB+BC 。解:逻辑电路图10根据图P1.10所示波形图,写出逻辑关系表达式Z= fA,B,C,并将表达式简化成最简或非-或非表达式和最简与-或-非表达式。图P1.10解:根据波形图列出真值表:ABCZ00000011010001111000101011011111利用卡诺图化简得到:或非-或非表达式与或非表达式11用公式法证明:解:解法一:Y1=Y2解法二:12证明不等式。解:令当D=0时,列出函数真值表:ABCY1Y20000100110010010111110011101111100111111从真值表可知:Y1Y213已知逻辑函数,求:最简与-或式、与非-与非式、最小项表达式。解:最简与-或式:与非-与非式:最小项之和:14已知FA,B,C=AB+BC,求其最大项之积表达式标准或-与式。解:方法一:先求最小项之和,再求最大项之积。方法二:直接求。15某组合逻辑电路如图P1.15所示:1写出函数Y的逻辑表达式;2将函数Y化为最简与-或式;3用与非门画出其简化后的电路。图P1.15解:16与非门组成的电路如图P1.16所示:1写出函数Y的逻辑表达式;2将函数Y化为最简与-或式;3用与非门画出其简化后的电路。图P1.16解:,17列出如图P1.17所示逻辑电路的真值表。图P.17解:真值表ABCL1L2ABCL1L2000101000100101101010100111001011101110018用公式法化简逻辑函数:1234解 123利用摩根定理包含律逆应用419将以下逻辑函数化简为:1最简或-与式;2最简或非-或非式。解:1求函数Y的对偶式Y'2化简Y'用公式化简法化简,得配项ABD,结合律3求Y'的对偶式<Y'>',即函数Y最简或-与式再两次求反 最简或非-或非式20若两个逻辑变量X、Y同时满足X+Y=1和XY = 0,则有。利用该公理证明:。证:令,且利用公式利用公式利用公式利用公式利用公式,原等式成立。21试用卡诺图法将逻辑函数化为最简与-或式:1FA,B,C=m0,1,2,4,5,72FA,B,C,D=m4,5,6,7,8,9,10,11,12,133FA,B,C,D=m0,2,4,5,6,7,12+ d8,104FA、B、C、D=m5、7、13、14+d3、9、10、11、15解:123422求下面函数表达式的最简与-或表达式和最简与-或-非表达式。F=m0,6,9,10,12,15+d2,7,8,11,13,14解:最简与-或表达式23求FA,B,C,D=m0,1,4,7,9,10,13+d2,5,8,12,15的最简与-或式及最简或-与式。解:1最简与-或式2最简或-与式方法一:根据最简与-或式变换得到:方法二:利用卡诺图对0方格画包围圈。24用卡诺图化简逻辑函数,给定约束条件为:。解:25用卡诺图化简逻辑函数,给定约束条件为:AB+CD= 0。解:26用卡诺图化简逻辑函数:解:方法一:直接按照或-与表达式画卡诺图方法二:27用卡诺图化简逻辑函数:解:=m1,2,3,6,7,9,11,12,13,14,15·m2,3, 7,9,10,11, 1528有两个函数F=AB+CD、G=ACD+BC , 求M=F·G 及N=F+G的最简与-或表达式。解:画出F和G的卡诺图如下:函数在进行与或运算时,只要将图中编号相同的方块,按下述的运算规则进行运算,即可求得它们的逻辑与、逻辑或等函数。其运算规则如表所示。01×+01×0000001×101×1111×0××××1× 根据表中运算规则,得到表达式:29有两个函数, F1A,B,C,D= m0,2,7,8,10,13+ d1,4,9,F2A,B,C,D=M1,2,6,8,10,12,15·D4,9,13,其中m、M表示最小项和最大项,d、D表示无关项,试用卡诺图求:1的最简与-或表达式;2的最简或-与表达式。解:先将F2转化为最小项之和的形式:画出F1和F2的卡诺图:画出P1和P2的卡诺图:18 / 18