专升本不定积分.ppt
第六讲 不定积分的概念与换元积分法,1 不定积分的概念与性质2 凑微分法(第一换元积分法)3 第二换元积分法,例,定义:,1、原函数与不定积分的概念,原函数存在定理:,简言之:连续函数一定有原函数.,问题:,(1)原函数是否唯一?,例,(为任意常数),(2)若不唯一它们之间有什么联系?,关于原函数的说明:,(1)若,则对于任意常数,,(2)若 和 都是 的原函数,,则,(为任意常数),证,(为任意常数),不定积分的定义:,例1 求,解,解,例2 求,例3 设曲线通过点(1,2),且其上任一点处的切线斜率等于这点横坐标的两倍,求此曲线方程.,解,设曲线方程为,根据题意知,由曲线通过点(1,2),所求曲线方程为,显然,求不定积分得到一积分曲线族.,由不定积分的定义,可知,结论:,微分运算与求不定积分的运算是互逆的.,实例,启示,能否根据求导公式得出积分公式?,结论,既然积分运算和微分运算是互逆的,因此可以根据求导公式得出积分公式.,1.2 基本积分表,基本积分表,是常数);,说明:,简写为,例4 求积分,解,根据积分公式(2),证,等式成立.,(此性质可推广到有限多个函数之和的情况),1.3 不定积分的性质,例5 求积分,解,例6 求积分,解,例7 求积分,解,例8 求积分,解,说明:,以上几例中的被积函数都需要进行恒等变形,才能使用基本积分表.,解,所求曲线方程为,基本积分表(1),不定积分的性质,原函数的概念:,不定积分的概念:,求微分与求积分的互逆关系,小结,问题,?,解决方法,利用复合函数,设置中间变量.,过程,令,2、第一类换元法,在一般情况下:,由此可得换元法定理,第一类换元公式(凑微分法),说明,使用此公式的关键在于将,化为,观察重点不同,所得结论不同.,定理1,例1 求,解(一),解(二),解(三),例2 求,解,一般地,例3 求,解,例4 求,解,例5 求,解,例6 求,解,例7 求,解,例8 求,解,例9 求,原式,例10 求,解,例11 求,解,说明,当被积函数是三角函数相乘时,拆开奇次项去凑微分.,例12 求,解,例13 求,解(一),(使用了三角函数恒等变形),解(二),类似地可推出,解,例14 设 求.,令,例15 求,解,问题,解决方法,改变中间变量的设置方法.,过程,令,(应用“凑微分”即可求出结果),3、第二类换元法,证,设 为 的原函数,令,则,第二类积分换元公式,例16 求,解,令,例17 求,解,令,例18 求,解,令,说明(1),以上几例所使用的均为三角代换.,三角代换的目的是化掉根式.,一般规律如下:当被积函数中含有,可令,可令,可令,积分中为了化掉根式是否一定采用三角代换(或双曲代换)并不是绝对的,需根据被积函数的情况来定.,说明(3),(三角代换很繁琐),令,解,例20 求,解,令,说明(4),当分母的阶较高时,可采用倒代换,令,解,例22 求,解,令,(分母的阶较高),例23 求,解,令,基本积分表,小结,两类积分换元法:,(一)凑微分,(二)三角代换、倒代换、根式代换,基本积分表(2),