欢迎来到课桌文档! | 帮助中心 课桌文档-建筑工程资料库
课桌文档
全部分类
  • 党建之窗>
  • 感悟体会>
  • 百家争鸣>
  • 教育整顿>
  • 文笔提升>
  • 热门分类>
  • 计划总结>
  • 致辞演讲>
  • 在线阅读>
  • ImageVerifierCode 换一换
    首页 课桌文档 > 资源分类 > DOCX文档下载  

    教学设计频率的稳定性.docx

    • 资源ID:319889       资源大小:57.76KB        全文页数:9页
    • 资源格式: DOCX        下载积分:5金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要5金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    教学设计频率的稳定性.docx

    频率的稳定性教材分析本节普通高中课程标准数学教科书-必修二(北师大版)第三章频率的稳定性,本节课主要帮助学生认识频率与概率的关系,即事件的概率越大,意味着事件发生的可能性越大,在重复实验中,相应的频率一般也越大;事件的概率越小,则事件发生的可能性越小,在重复实验中,相应的频率一般也越小。进一步让学生体会概率与统计的思想,发展学生的直观想象、逻辑推理、数学建模的核心素养。教学目标与核心素养课程目标学科素养A.通过实验让学生理解当试验次数较大时,实验频率稳定在某一常数附近,并据此能估计出某一事件发生的频率.B.通过对实际问题的分析,培养使用数学的良好意识,激发学习兴趣,体验数学的应用价值.1 .数学建模:概率的应用2 .逻辑推理:频率与概率的关系3 .数学运算:频率与概率的计算4 .数据抽象:概率的概念教学重难点1 .教学重点:频率与概率的区别和联系2 .教学难点:大量重复实验得到频率的稳定值的分析.课前准备多媒体教学过程一、探究新知我们知道,事件的概率越大,意味着事件发生的可能性越大,在重复试验中,相应的频率一般也越大;事件的概率越小,则事件发生的可能性越小,在重复试验由中,相应的频率一般也越小,在初中,我们利用频率与概率的这种关系,通过大知量重复试验,用频率去估计概率,那么,在重复试验中,频率的大小是否就决定识了概率的大小呢?频率与概率之间到底是一种怎样的关系呢?回随机事件及其概率顾提重复做同时抛掷两枚质地均匀的硬币的试验,设事件A="一个正面朝上,一个反面朝上”,统计A出现的次数并计算频率,再与其概率进行比较,我们研究一下有什么规律?历史上曾有人做过抛掷硬币的大量重复试验,结果如下表:利用计算机模拟掷两枚硬币的试验,在重复试验次数为20,100,500时各做5组试验,得到事件A=“一个正面朝上,一个反面朝上”发生的频数和频率人4)(如下表)»«20MttM9IV* 100 MttI120.6560.56261(290.4550OJO24143130"480.4S25047035$035258I 15120.6520.52253 I 思考同一组的试验结果一样吗?为什么会出现这种情况?随着试验次数的增加,事件A发生的频率有什么变化规律?用折线图表示频率的波动情况,你有什么发现?结论:试验次数n相同,频率(A)可能不同,这说明随机事件发生的频率具有随机性从整体来看,频率在概率0.5附近波动.当试验次数较少时,波动幅度较大;当试验次数较大时,波动幅度较小.但试验次数多的波动幅度并不全都比次数少的小,只是波动幅度小的可能性更大.大量试验表明,在任何确定次数的随机试验中,一个随机事件A发生的频率具有随机性,一般地,随着试验次数n的增大,频率偏离概率的幅度会缩小,即事件A发生的频率#A)会逐渐稳定于事件A发生的概率P(A).我们称频率的这个性质为频率的稳定性.因此,我们可以用频率T(A)估计概率P(A).对于给定的随机事件A,如果随着试验次数的增加,事件A发生的频率f(A)稳定在某个常数上,把这个常数记着P(A),称为事件A的概率,简称为A的概率。频率与概率的区别和联系的剖析频率本身是随机的,是一个变量,在试验前不能确定,做同样次数的重复试验得到的事件发生的频率会不同.(2)概率是一个确定的数,是客观存在的,与每次的试验无关.频率是概率的近似值,随着试验次数的增加,频率会越来越稳定于概率附近.在实际问题中,通常事件发生的概率未知,常用频率作为它的估计值.例1新生婴儿性别比是每100名女婴对应的男婴数,通过抽样调查得知,我国2014年、2015年出生的婴儿性别比分别为115.88和113.51.分别估计我国2014年和2015年男婴的出生率(新生儿中男婴的比率,精确到0.001);出问题,引出频率与概率的关系问题。发展学生数学抽象、直观想象和逻辑推理的核心素养。根据估计结果,你认为“生男孩和生女孩是等可能的”这个判断可靠吗?由统计定义求概率的一般步骤(1)确定随机事件A的频数nA;(2)由凡4)=计算频率,/(A)(n为试验的总次数);(3)由频率./U)估计概率P(A).概率可看成频率在理论上的稳定值,它从数量上反映了随机事件发生的可能性的大小,它是频率的科学抽象,当试验次数越来越多时频率向概率靠近,只要次数足够多,所得频率就近似地当作随机事件的概率.例2.一个游戏包含两个随机事件A和B,规定事件A发生则甲获胜,事件B发生则乙获胜,判断游戏是否公平的标准是事件A和B发生的概率是否相等。思考1:气象工作者有时用概率预报天气,如某气象台预报“明天的降水概率是90%.如果您明天要出门,最好携带雨具”,如果第二天没有下雨,我们或许会抱怨气象台预报得不准确,那么如何理解“降水概率是90%”?又该如何评价预报的结果是否准确呢?提示:降水的概率是气象专家根据气象条件和经验,经分析推断得到的.对“降水的1«率为90%”比较合理的解释是:大量观察发现,在类似的气象条件下,大约有90%的天数要下雨.只有根据气象预报的长期记录,才能评价预报的准确性,如果在类似气象条件下预报要下雨的那些天(天数较多)里,大约有90%确实下雨了,那么应该认为预报是准确的;如果真实下雨的天数所占的比例与90%差别较大,那么就可以认为预报不太准确.思考2.公元1053年,大元帅狄吉奉旨,率兵征讨侬智高.由于士兵士气不高,很难取胜,为了提高士气,出征前,狄青拿出一百枚“宋元通宝”铜币,向众将士殷殷许愿:“如果钱币扔在地上,有字的一面会全部向上,那么这次出兵可以打败敌人!”在千军万马的注目之下,狄肯将铜币用力向空中抛去,奇迹发生了:一百枚铜币,枚枚向上.顿时,全军欢呼雀跃,将士个个认定是神灵保佑,战争必胜无疑.事实上,铜币正反面都是一样的!同学样想一下,如果铜币正反面不一样,那么这一百枚铜币正面全部向上的可能性大吗?思考3.如果某种彩票的中奖概率为1/1000,那么买IooO张这种彩票一定能中奖吗?(假设该彩票有足够多的张数.)不一定。买IOoO张彩票相当于做IOOo次试验,因为每次试验的结果都是随机的,所以做100。次的结果也是随机的。虽然中奖张数是随机的,但这种随机性中具有规律性。随着试验次数的增加,即随着买的彩票张数的增加,大约有1/1000的彩票中奖。(999I-*0.6323通过具体问题的分析,归纳出频率与概率的关系。发展学IloOOJ买IooO张彩票中奖的概率为:生数学抽象、逻辑推理的核心素养。通过实例分析,让学生掌握运用频率来计算事件概率,提升推理论证能力,提高学生的数学抽象、数学建模及逻辑推理的核心素养。三、达标检测1.某工厂生产的产品合格率是99.99%,这说明()A.该厂生产的IOOoo件产品中不合格的产品一定有1件B.该厂生产的10000件产品中合格的产品一定有9999件C.合格率是99.99%,很高,说明该厂生产的IOOOO件产品中没有不合格产品D.该厂生产的产品合格的可能性是99.99%3.为了估计水库中鱼的尾数,可以使用以下的方法:先从水库中捕出一定数量的鱼,例如2000尾,给每尾鱼做上记号,不影响其存活,然后放回水库.经过适当的时间,让其和水库中的其他鱼充分混合,再从水库中捕出一定数量的鱼,例如500尾,查看其中带记号的鱼,假设有40尾,根据上述数据,估计水库中鱼的尾数为.固本节所学知识,通过学生解决问题,发展学生的数学抽象、逻辑推理、数学运算、数学建模的核心素养。四、小结频率概率区别本身是随机的观测值(试验值),在试验前无法确定,多数会随着试验的改变而变化,做同样次数的重复试验,得到的结果也会不同本身是固定的理论值,与试验次数无关,只与事件自身的属性有关联系频率是概率的试验值,会随试验次数的增大逐渐稳定;概率是频率理论上的稳定值,在实际中可用频率估计概率(1)概率是随机事件发生可能性大小的度量,是随机事件A的木质属性,随机事件A发生的概率是大量重复试验中事件4发生的频率的近似值.(2)由概率的定义我们可以知道随机事件A在独立重复试验中发生与否是随机的,但随机中含有规律性,而概率就是其规律性在数量上的反映.(3)正确理解概率的意义,要清楚概率与频率的区别与联系.对具体的问题要从全局和整体上去看待,而不是局限于某一次试验或某一个具体的事件.通过总结,让学生进一步巩固本节所学内容,提高概括能力。

    注意事项

    本文(教学设计频率的稳定性.docx)为本站会员(夺命阿水)主动上传,课桌文档仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知课桌文档(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-1

    经营许可证:宁B2-20210002

    宁公网安备 64010402000986号

    课桌文档
    收起
    展开