a的中心化子做成pn×n的交换子环的充要条件.docx
-
资源ID:397349
资源大小:14.83KB
- 资源格式: DOCX
下载积分:5金币
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
a的中心化子做成pn×n的交换子环的充要条件.docx
a的中心化子做成pn×n的交换子环的充要条件a的中心化子是一个整数,通常用Mk表示。将a的中心化子做成PNXN的交换子环的充要条件是:1 .a0必须是最大的整数;2 .交换子环中的所有元素都是舒1的倍数;3 .交换子环中的所有元素的模的最大值等于1,小于2,小于最大的整数的平方根;4 .交换子环中的所有元素的模的最小值等于1,小于2,小于最大的整数的平方根。证明:假设MO不是最大的整数,则交换子环中可能存在非交换元素,即Q0+1,这样就不满足第2条和第3条要求。假设交换子环中存在非交换元素,则根据第1条和第4条要求可以知道,这个元素必须是ak的倍数。例如,若琬等于一个4,5,7等和模组4所得余数最小时得到的结果,那么交换子环中的元素必须满足:(Lqa),(2,Qhi),(3,QA-2),及其推导后剩下没用过的7个倍数相乘是63mod2之值乘模2大于0(要确保符合4、3),其对应所有余数乘2再求余取最大就是(L办)。因此,交换子环中的所有元素都是Mk的倍数,也满足了第3条要求。此外,对应符合模4不为1或-1或0这三种情况的结果对应满足1或0模小于(k-1)2或(k-2)2这两种情况,从而也满足了第4条要求。