欢迎来到课桌文档! | 帮助中心 课桌文档-建筑工程资料库
课桌文档
全部分类
  • 党建之窗>
  • 感悟体会>
  • 百家争鸣>
  • 教育整顿>
  • 文笔提升>
  • 热门分类>
  • 计划总结>
  • 致辞演讲>
  • 在线阅读>
  • ImageVerifierCode 换一换
    首页 课桌文档 > 资源分类 > DOCX文档下载  

    市场预测实验报告.docx

    • 资源ID:435037       资源大小:286.77KB        全文页数:25页
    • 资源格式: DOCX        下载积分:5金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要5金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    市场预测实验报告.docx

    实验一回归方程的拟合实验二邹检验及虚拟变量实验三线性回归中的问题实验四随机时间序列的特征观察实验五单位根检验实验六ARMA模型运用实验四随机时间序列的特征观察实验属性综合型实验时间2022.5.26实验目的1 .准确掌握随机过程的平稳性和非平稳性的特征和判断方法。2 .熟练掌握运用自相关分析判断随机过程的平稳性。3 .学会利用自相关分析图判断序列的季节性。4 .熟练掌握运用相关分析图判断齐次非平稳序列平稳化需要的差分次数。实验内容实验步骤1 .根据数据频率和时间范围,创建EVIEWS工作文件2 .录入数据,并对序列进性初步分析。绘制财政存款余额数据原始序列和对数序列的折线图,分析序列的基本趋势。3 .利用相关分析图观察对数序列的随机特征。分别观察对数序列和一次差分后的对数序列的相关分析图,判断序列平稳性和季节性。4 .对财政存款余额对数序列进性季节调整,再观察相关分析图。分别观察季节调整后的对数序列和一次差分后序列的相关分析图,判断序列平稳性和平稳化需要的差分次数。实验结果分析1.NSAVEDate05y26718Time09:50iSample-199OMO12007M12Includedobservations,216AUtoCorrQIatiOr)PartialCorrelationACPACQ-StatProbII10985098521268OOOOIII209720021420450.000III309580004623460000II(I40944-005082122OOOOIII50929-0020101370000III60.913-0.0221200.70.000III70.898-0.0171382.20.000III0882-0004155840000III90866-0033172900000III100849-003118937OOOOIII1108320013205280.000III120817004922067OOOOIII130801-002423555OOOOIII140785-0009249900000III1507690011263750000III160753001727709OOOOIII170737-0004289940000III180721-0009302290000III190.705-0.0143141.50.000III200.688-0.0113255.40.000III210672-0017336450000III220656001234688OOOOIII230639-0005356860000III240624000366390.000III250609002537553OOOOIII260594000138427OOOOIII270580-000639264OOOOIII280565-001340063OOOOIII290551-000540827OOOOIII300.536-00124155.40.000III310522-000742247OQOOIII320.508-0.0064290.60.000III330.493-0.0124353.30.000III340479-001444126OOOOIII350465-0008446890.000III360.45100244522.20.000AutocoelatonPartialCOrreIatlOnACPACQ-StatProbIIIIIIIIIIIIIIIIII;IIIIII:1:IIIIIII-IIIIIIIIIIIIIIIII:IIIIFIIIIIII'IIIIIIIIIIIIIrIIIIIIIIIIIIIIII'1-0.262-026214.914OOOO20.0750.00716.1420.0003 00200.04416270.0014 0030004916.43100025 0036005716.72400056 0.022004316.8320.0107 0020003116.92300188 0007001216.93300319 0.0380.036172550.04510 0066008318.234005111 -0272-026535.134OOOO120.3720.26366.9820.000130031022667.204OOOO140.062011868.1010.00015-0010000368.126000016-00074)04568.1360000170024-002468.273OOOO180036001568.588OOOO190039003968.947OOOO200.013004668.9860000210.0200.01769.0850.000220.057QO3869.8750.000230023021370.0060.000240059008470.865OOOO250048-000271.4380.000260077900572.896OOOO2701-003672.897OOOo28-0017003972.969OOOO290002000772.9710.000300011000473.004OOOO310.0270.00273.1890.000320.011-0.02473.2220.00033-0001-COW73.222OOOO340013006873.2660.000350045-COOS73.794OOOO360049000474.428OOOOAutocorrelationPartialConeiationACPACQ-StatProb12345678g1011121314151617181920212223242526272829303132333435360.95509551889500000912-0012361.8500000864-0067517940.0000.817-0.025658.050.0000.767-0.051782.210.0000717-0028891340.000067000019870300000625OOo6107090.0000583-0000114430.0000540-00471207400000499000112617000004900339131440.0000470-01491363000000.452-0.0341408.10.0000440009514511OOOO043200211492900000426-041533700000419-00071573400000410-0.0211611600000399-00301647900000387-004216823OOOO03750028171470000036001001744800000.3610.0841775.30.000036200011806000000361002718368000003S8-00171867300000353-00471897000000347-00111925900000.340-0002195390.0000.332-00351980600000.322-00232005900000.311-0.022202960.0000.3000.0292051.80.0000.2880.082207250.0000.277-0.050209170000AutocorrelationPailiaIConeIationACPACOStatProb1I,l,1-0.025-0025012460724IIi200440044053020767'',3001800200595408971.40.0440.0431.00560.909II50.0110.0111.02980.960IIi>6-0026-0030117810978II117-0036-0040144970934IIIII8-0018-0020151900992IIIl900320034173SO0995IIdI10-0038-0031204930996mI白'11-0.433-04374273500IIiI120004-002642739OoOoIIIJI13-001900264282100'IqIU-0082-008244304000011Ii15-0054-0035449450000IIII16-0017-0007450060000II170012-0009450390000II»180.0340.01345.2960.000III1900330035455420001IIII2000060047455So0001II中210006-004545557OoOlIIcd«220037-0206458670.002II)8I23-0033-0053461160003II中24*0029-0031463100004IIl1250038-004546645Ooo5IIIII2600390007469940007III2700380038473410009IIII280007-0001473530013II»290.0000007473530.017II13000100049473750023II>1<310.0020.04247.3760.030IIIII320015-0004474280039IId>33-0017-0103475020049IIU1340.003-0.04947.5040.062II中35-0009-00584752400771MI)I3600290010477280091指导教师审阅(1)实验态度:不认真(),较认真(),认真()(2)实验目的:不明确(),较明确(),明确()(3)实验内容:不完整(),较完整(),完整()(4)实验步骤:混乱(),较清晰(),清晰()(5)实验结果:错误(),基本正确(),正确()(6)实验结果分析:无(),不充分(),较充分(),充分()(7)其它补充:总评成绩:评阅教师(签字):实验五单位根检验实验属性综合型实验时间2022.5.26实验目的1 .准确掌握单位根检验方程的形式和检验原理。2 .学会利用单位根检验方法对样本序列进行平稳性检验。实验内容实验步骤1 .根据数据频率和时间范围,创建EVlEWS工作文件2 .录入数据,并对序列进行初步分析。分别绘制上证综指和深证综指序列的折线图以及组形式的折线图,分析序列的基本趋势,以及两者的关系。运用ADF检验对上证综指和深证综指序列进行单位根检验。分别做原序列和差分序列的单位根检验,并判断单整的阶数。根据序列的折线图选择检验方程程式,根据AlC准则选择ADF检验时的最大滞后阶数Po1、折线图B股指数2、单位根检验a)上证指数NullHypothesis:SZhasaunitrootExogenous:Constant1.ag1.ength:0(Automatic-basedonSIC,maxlag=0)t-StatisticProb.*AugmentedDiCkeyFullerteststatistic08218430.8054Testcriticalvalues:1%level-3.5460995%level-2.91173010%level-2.593551*MacKinnon(1996)one-sidedp-values.AugmentedDickey-FullerTestEquationDependentVariable:D(SZ)Method:1.eastSquaresDate:05/26/18Time:10:35Sample(adjusted):2022M022022M12Includedobservations:59afteradjustmentsVariableCoefficientStd. Errort-StatisticProb.SZ(-D-0.0357180.043461-0.8218430.4146C104.7672115.30550.9086060.3674R-squared0.011711Meandependentvar12.68627AdjustedR-squared-0.005628S.D.dependentvar208.6358S.E.ofregression209.2220Akaikeinfocriterion13.55798Sumsquaredresid2495110.Schwarzcriterion13.628401.oglikelihood-397.9604Hannan-Quinncriter.13.58547F-Statistic0.675425Durbin-Watsonstat1.130185Prob(F-Statistic)0.414591b)B股指数NullHypothesis:BZhasaunitrootExogenous:Constant1.ag1.ength:0(Automatic-basedonSIC,maxlag=0)t-StatisticProb.*AugmentedDickey-Fullerteststatistic-09279370.7725Testcriticalvalues:1%level-3.5460995%level-2.91173010%level-2.593551wMacKinnon(1996)one-sidedp-values.AugmentedDickey-FullerTestEquationDependentVariable:D(BZ)Method:1.eastSquaresDate:05/26/18Time:10:39Sample(adjusted):2022M022022M12Includedobservations:59afteradjustmentsVariableCoefficientStd.Errort-StatisticProb.BZ(-1)0.0606000.065306-0.9279370.3574C18.4440518.050931.0217790.3112R-squared0.014882Meandependentvar2.033220AdjustedR-squared-0.002401S.D.dependentvar27.73204S.E.ofregression27.76532Akaikeinfocriterion9.518763Sumsquaredresid43942.03Schwarzcriterion9.5891881.oglikelihood-278.8035Hannan-Quinncriter.9.546254F-statistic0.861066Durbin-Watsonstat1.179314Prob(F-Statistic)0.357353B股指数上证指数NullHypothesis:BhasaunitrootExogenous:Constant1.ag1.ength:2(Automatic-basedonSIC,ma×lag=10)t-StatisticProb.*AugmentedDickey-Fullerteststatistic-1.0006750.7474Testcriticalvalues:1%level-3.5503965%level-2.91354910%level-2.594521wMacKinnon(1996)one-sidedp-values.AugmentedDickey-FullerTestEquationDependentVariable:D(B)Method:1.eastSquaresDate:05/26/18Time:10:55Sample(adjusted):2022M042022M12Includedobservations:57afteradjustmentsVariableCoefficientStd.Errort-StatisticProb.B(-1)-0.0664070.066362-1.0006750.3215D(B(-1)0.5471970.1288374.2472190.0001D(B(-2)-0.3514250.138779-2.5322640.0143C19.4883218.096301.0769230.2864R-squared0.287792Meandependentvar1.911579AdjustedR-squared0.247478S.D.dependentvar28.20860S.E.ofregression24.47040Akaikeinfocriterion9.300397Sumsquaredresid31736.42Schwarzcriterion9.4437691.oglikelihood-261.0613Hannan-Quinnenter.9.356116F-Statistic7.138824Durbin-Watsonstat2.001913Prob(F-Statistic)0.000409B1Jeveldifference:NullHypothesis:D(B)hasaunitrootExogenous:Constant1.ag1.ength:1(Automatic-basedonSIC,maxlag=10)t-StatisticProb.*AugmentedDickeyFullerteststatistic61140320.0000Testcriticalvalues:1%level-3.5503965%level-2.91354910%level-2.594521wMacKinnon(1996)one-sidedp-values.AugmentedDickey-FullerTestEquationDependentVariable:D(B,2)Method:1.eastSquaresDate:05/26/18Time:10:59Sample(adjusted):2022M042022M12Includedobservations:57afteradjustmentsVariableCoefficientStd.Errort-StatisticProb.D(B(-1)-0.8806680.144041-6.1140320.0000D(B(-1),2)0.4060460.1275963.1822790.0024C1.6732813.2447600.5156870.6082R-squared0.409900Meandependentvar0.751579AdjustedR-squared0.388044S.D.dependentvar31.28141S.E.ofregression24.47070Akaikeinfocriterion9.284026Sumsquaredresid32336.03Schwarzcriterion9.3915551.oglikelihood-261.5947Hannan-Quinncriter.9.325816F-Statistic18.75493Durbin-Watsonstat2.057590Prob(F-Statistic)0.000001D(B)NullHypothesis:ShasaunitrootExogenous:Constant1.ag1.ength:1(Automatic-basedonSIC,maxlag=10)t-StatisticProb.*AugmentedDickeyFullerteststatistic17199330.4161Testcriticalvalues:1%level-3.5482085%level-2.91263110%level-2.594027*MacKinno(1996)one-sidedp-values.AugmentedDickey-FullerTestEquationDependentVariable:D(三)Method:1.eastSquaresDate:05/26/18Time:10:56Sample(adjusted):2022M032022M12Includedobservations:58afteradjustmentsVariableCoefficientStd.Errort-StatisticProb.S(-1)-0.0691900.040228-1.7199330.0911D(S(-1)0.4636520.1219213.8028870.0004C183.8161106.21891.7305410.0891R-squared0.218032Meandependentvar10.93328AdjustedR-squared0.189597S.D.dependentvar210.0192S.E.ofregression189.0643Akaikeinfocriterion13.37239Sumsquaredresid1965993.Schwarzcriterion13.478961.oglikelihood-384.7993Hannan-Quinnenter.13.41390F-Statistic7.667681Durbin-Watsonstat1.828385Prob(F-Statistic)0.0011551leveldifferenceNullHypothesis:D(三)hasaunitrootExogenous:Constant1.ag1.ength:0(Automatic-basedonSIC,maxlag=10)t-StatisticProb?AugmentedDickey-Fullerteststatistic-47918180.0002Testcriticalvalues:1%level-3.5482085%level-2.91263110%level-2.594027*MacKinnon(1996)one-sidedp-values.AugmentedDickey-FullerTestEquationDependentVariable:D(S,2)Method:1.eastSquaresDate:05/26/18Time:10:58Sample(adjusted):2022M032022M12Includedobservations:58afteradjustmentsVariableCoefficientStd.Errort-StatisticProb.D(S(-1)-0.5808260.121212-4.7918180.0000C6.20223025.292710.2451900.8072R-squared0.290794Meandependentvar-0.355000AdjustedR-squared0.278129S.D.dependentvar226.3827S.E.ofregression192.3415Akaikeinfocriterion13.39030Sumsquaredresid2071733.Schwarzcriterion13.461351.oglikelihood-386.3186Hannan-Quinnenter.13.41797F-Statistic22.96152Durbin-Watsonstat1.800422Prob(F-Statistic)0.000013D(三)NullHypothesis:USD_URDhasaunitrootExogenous:Constant1.ag1.ength:0(Automatic-basedonSIC,maxlag=10)t-StatisticProb.*AugmentedDickey-Fullerteststatistic-1.2251770.6569Testcriticalvalues:1%level5%level10%level-3.562669-2.918778-2.597285wMacKinnon(1996)one-sidedp-values.AugmentedDickey-FullerTestEquationDependentVariable:D(USD_URD)Method:1.eastSquaresDate:05/26/18Time:12:01Sample(adjusted):253Includedobservations:52afteradjustmentsVariableCoefficientStd.Errort-StatisticProb.USD_URD(-1)-0.0610770.049851-1.2251770.2262C0.0437760.0357121.2258230.2260R-squared0.029146Meandependentvar4.77E-05AdjustedR-squared0.009729S.D.dependentvar0.008680S.E.ofregression0.008638Akaikeinfocriterion-6.627630Sumsquaredresid0.003731Schwarzcriterion-6.5525821.oglikelihood174.3184Hannan-Quinnenter.-6.598858F-Statistic1.501058Durbin-Watsonstat1.794929Prob(F-Statistic)0.226249NullHypothesis:D(USD_URD)hasaunitrootExogenous:Constant1.ag1.ength:0(Automatic-basedonSIC,ma×lag=10)t-StatisticProb.*AugmentedDiCkeyFullerteststatistic66383730.0000Testcriticalvalues:1%level5%level10%level-3.565430-2.919952-2.597905*MacKinnon(1996)one-sidedp-values.AugmentedDickey-FullerTestEquationDependentVariable:D(USD_URD,2)Method:1.eastSquaresDate:05/26/18Time:12:01Sample(adjusted):353Includedobservations:51afteradjustmentsVariableCoefficientStd.Errort-StatisticProb.D(SD-URD(-1)-0.9380210.141303-6.6383730.0000C0.0002130.0012250.1742720.8624R-squared0.473503Meandependentvar0.000109AdjustedR-squared0.462758S.D.dependentvar0.011933S.E.ofregression0.008747Akaikeinfocriterion-6.601842Sumsquaredresid0.003749Schwarzcriterion-6.5260841.oglikelihood170.3470Hannan-Quinnenter.-6.572892F-statistic44.06800Durbin-Watsonstat1.996560Prob(F-Statistic)0.000000NullHypothesis:D(USD_URD)hasaunitrootExogenous:Constant1.ag1.ength:0(Automatic-basedonSIC,maxlag=10)t-StatisticProb.*AugmentedDiCkeyFullerteststatistic66383730.0000Testcriticalvalues:1%level-3.5654305%level-2.91

    注意事项

    本文(市场预测实验报告.docx)为本站会员(夺命阿水)主动上传,课桌文档仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知课桌文档(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-1

    经营许可证:宁B2-20210002

    宁公网安备 64010402000986号

    课桌文档
    收起
    展开