各种复用技术.docx
谁能告知我频分.码分时分.波分.空分的基本原理?这些都是信道的复用技术。采用特地电子设施进行,大部分用到乘法器,原理比较简单。只能简洁和你说一下是什么:频分(FD):划分很宽的频带为若干子频带,分给若干用户码分(CD):每个用户有个唯一的ID码,这个码会乘他放射的每个比特信息,以表示区分时分(TD):信息发送周期划分为若干子时间片,每个片给一个用户波分(WD):光纤传输信号按激光的不同波长分给不同用户空分(TD):多天线系统中,每个天线都分给不同用户,用特殊技术将混迭干扰去除。SDM(空分复用)FDM(频分多路复用)TDM(时分多路复用)WDM(波分多路竟用)CDMA(码分多址)频分复用(FDM,FrequencyDivisionMIlItiPIeXing)就是将用于传输信道的总带宽划分成若干个子频带(或称子信道),每一个子信道传输1路信号。频分复用要求总频率宽度大于各个子信道频率之和,同时为了保证各子信道中所传输的信号互不干扰,应在各子信道之间设立隔离带,这样就保证了各路信号互不干扰(条件之一)。频分梵用技术的特点是全部子信道传输的信号以并行的方式工作,每一路信号传输时可不考虑传输时延,因而频分复用技术取得了特别广泛的应用。频分复用技术除传统意义上的频分复用(FDM)外,还有一种是正交频分复用(OFDM)。波分复用(WDM,WavelengthDivisionMUItiPIeXing)其本质上是频分复用而已。WDM是在1根光纤上承载多个波长(信道)系统,将1根光纤转换为多条“虚拟”纤,当然每条虚拟纤独立工作在不同波长上,这样极大地提高了光纤的传输容量。由于WDM系统技术的经济性与有效性,使之成为当前光纤通信网络扩容的主要手段。波分复用技术作为一种系统概念,通常有3种凭用方式,即131Onm和155Onm波长的波分复用、粗波分复用(CWDM,CoarseWavelengthDivisionMUltiPIeXing)和密集波分免用(DWDM,DenseWavelengthDivisionMultiplexing)«时分复用(TDM,TimeDivisionMWipIexing)就是将供应应整个信道传输信息的时间划分成若干时间片(简称时隙),并将这些时隙安排给每一个信号源使用,每一路信号在自己的时隙内独占信道进行数据传输。时分复用技术的特点是时隙事先规划安排好且固定不变,所以有时也叫同步时分梵用。其优点是时隙安排固定,便于调整掌握,适于数字信息的传输;缺点是当某信号源没有数据传输时,它所对应的信道会消失空闲,而其他繁忙的信道无法占用这个空闲的信道,因此会降低线路的采用率。时分复用技术与频分复用技术一样,有着特别广泛的应用,电话就是其中最经典的例子,此外时分复用技术在广电也同样取得了广泛地应用,如SDH,ATM,IP和HFC网络中CM与CMTS的通信都是采用了时分复用的技术。CDMA是采纳数字技术的分支扩频通信技术进展起来的一种崭新而成熟的无线通信技术,它是在FDM和TDM的基础上进展起来的。FDM的特点是信道不独占,而时间资源共享,每一子信道使用的频带互不重叠;TDM的特点是独占时隙,而信道资源共享,每一个子信道使用的时隙不重强;CDMA的特点是全部子信道在同一时间可以使用整个信道进行数据传输,它在信道与时间资源上均为共享,因此,信道的效率高,系统的容量大。CDMA的技术原理是基于扩频技术,即将需传送的具有肯定信号带宽的信息数据用一个带宽远大于信号带宽的高速伪随机码(PN)进行调制,使原数据信号的带宽被扩展,再经载波调制并发送出去;接收端使用完全相同的伪随机码,与接收的带宽信号作相关处理,把宽带信号换成原信息数据的窄带信号即解扩,以实现信息通信。CDMA码分多址技术完全适合现代移动通信网所要求的大容量、高质量、综合业务、软切换等,正受到越来越多的运营商和用户的青睐。空分复用(SDM,SPaCeDiViSiOnMUItiPIeXing)即多对电线或光纤共用1条缆的复用方式。比如5类线就是4对双绞线共用1条缆,还有市话电缆(几十对)也是如此。能够实现空分复用的前提条件是光纤或电线的直径很小,可以将多条光纤或多对电线做在一条缆内,既节省外护套的材料又便于使用。各种复用技术在数据通信中,复用技术的使用极大地提高了信道的传输效率,取得了广泛地应用。多路复用技术就是在发送端将多路信号进行组合(如广电前端使用的混合器),然后在一条专用的物理信道上实现传输,接收端再将复合信号分别出来。多路复用技术主要分为两大类:频分多路复用(简称频分复用)和时分多路复用(简称时分复用),波分复用和统计复用本质上也属于这两种复用技术。此外还有一些其他的复用技术,如码分复用、极化波复用和空分复用等。1频分复用频分复用(FDM,FrequencyDivisionMIlItiPIeXing)就是将用于传输信道的总带宽划分成若干个子频带(或称子信道),每一个子信道传输1路信号。频分复用要求总频率宽度大于各个子信道频率之和,同时为了保证各子信道中所传输的信号互不干扰,应在各子信道之间设立隔离带,这样就保证了各路信号互不干扰(条件之一)。频分复用技术的特点是全部子信道传输的信号以并行的方式工作,每一路信号传输时可不考虑传输时延,因而频分复用技术取得了特别广泛的应用。频分复用技术除传统意义上的频分复用(FDM)外,还有一种是正交频分复用(OFDM)。1.1 传统的频分复用传统的频分复用典型的应用莫过于广电HFC网络电视信号的传输了,不管是模拟电视信号还是数字电视信号都是如此,由于对于数字电视信号而言,尽管在每一个频道(8MHZ)以内是时分复用传输的,但各个频道之间仍旧是以频分复用的方式传输的。1.2 正交频分复用OFDM(OrthogonalFrequencyDivisionMIlltiPIeXing)实际是一种多载波数字调制技术。OFDM全部载波频率有相等的频率间隔,它们是一个基本振荡频率的整数倍,正交指各个载波的信号频谱是正交的。OFDM系统比FDM系统要求的带宽要小得多。由于OFDM使用无干扰正交载波技术,单个载波间无需爱护频带,这样使得可用频谱的使用效率更高。此外,OFDM技术可动态安排在子信道中的数据,为获得最大的数据吞吐量,多载波调制器可以智能地安排更多的数据到噪声小的子信道上。目前OFDM技术已被广泛应用于广播式的音频和视频领域以及民用通信系统中,主要的应用包括:非对称的数字用户环线(ADSL)、数字视频广播(DVB)、高清楚度电视(HDTV).无线局域网(WLAN)和第4代(4G)移动通信系统等。2时分复用时分复用(TDM,TimeDivisionMWiPleXing)就是将供应应整个信道传输信息的时间划分成若干时间片(简称时隙),并将这些时隙安排给每一个信号源使用,每一路信号在自己的时隙内独占信道进行数据传输。时分复用技术的特点是时隙事先规划安排好且固定不变,所以有时也叫同步时分复用。其优点是时隙安排固定,便于调整掌握,适于数字信息的传输;缺点是当某信号源没有数据传输时,它所对应的信道会消失空闲,而其他繁忙的信道无法占用这个空闲的信道,因此会降低线路的采用率。时分复用技术与频分复用技术一样,有着特别广泛的应用,电话就是其中最经典的例子,此外时分复用技术在广电也同样取得了广泛地应用,如SDH,ATM,IP和HFC网络中CM与CMTS的通信都是采用了时分复用的技术。3波分复用光通信是由光来运载信号进行传输的方式。在光通信领域,人们习惯按波长而不是按频率来命名。因此,所谓的波分复用(WDM,WavelengthDivisionMUItiPIeXing)其本质上也是频分复用而己。WDM是在"!根光纤上承载多个波长(信道)系统,将1根光纤转换为多条“虚拟”纤,当然每条虚拟纤独立工作在不同波长上,这样极大地提高了光纤的传输容量。由于WDM系统技术的经济性与有效性,使之成为当前光纤通信网络扩容的主要手段。波分复用技术作为一种系统概念,通常有3种复用方式,即131Onm和155Onm波长的波分复用、粗波分复用(CWDM,CoarseWavelengthDivisionMUItiPIeXing)和密集波分复用(DWDM,DenseWavelengthDivisionMultiple×ing)o(1)1310nm和1550nm波长的波分复用这种复用技术在20世纪70年月初时仅用两个波长:13IOrIm窗口一个波长,155Onm窗口一个波长,采用WDM技术实现单纤双窗口传输,这是最初的波分复用的使用状况。(2)粗波分复用继在骨干网及长途网络中应用后,波分复用技术也开头在城域网中得到使用,主要指的是粗波分梵用技术。CWDM使用12001700nm的宽窗口,目前主要应用波长在155Onm的系统中,当然131Onm波长的波分复用器也在研制之中。粗波分复用(大波长间隔)器相邻信道的间距一般220nm,它的波长数目一般为4波或8波,最多16波。当复用的信道数为16或者更少时,由于CWDM系统采纳的DFB激光器不需要冷却,在成本、功耗要求和设施尺寸方面,CWDM系统比DWDM系统更有优势,CWDM越来越广泛地被业界所接受CCWDM无需选择成本昂贵的密集波分解复用器和"光放"EDFA,只需采纳廉价的多通道激光收发器作为中继,因而成本大大下降。如今,不少厂家已经能够供应具有28个波长的商用CWDM系统,它适合在地理范围不是特殊大、数据业务进展不是特别快的城市使用。(3)密集波分复用密集波分复用技术(DWDM)可以承载8160个波长,而且随着DWDM技术的不断进展,其分波波数的上限值仍在不断地增长,间隔一般1.6nm,主要应用于长距离传输系统。在全部的DWDM系统中都需要色散补偿技术(克服多波长系统中的非线性失真一四波混频现象)。在16波DWDM系统中,一般采纳常规色散补偿光纤来进行补偿,而在40波DWDM系统中,必需采纳色散斜率补偿光纤补偿。DWDM能够在同一根光纤中把不同的波长同时进行组合和传输,为了保证有效传输,一根光纤转换为多根虚拟光纤。目前,采纳DWDM技术,单根光纤可以传输的数据流量高达400Gbit/s,随着厂商在福根光纤中加入更多信道,每秒太位的传输速度指日可待。4码分复用码分复用(CDM,CodeDivisionMUItiPIeXing)是靠不同的编码来区分各路原始信号的一种复用方式,主要和各种多址技术结合产生了各种接入技术,包括无线和有线接入。例如在多址蜂窝系统中是以信道来区分通信对象的,一个信道只容纳1个用户进行通话,很多同时通话的用户,相互以信道来区分,这就是多址。移动通信系统是一个多信道同时工作的系统,具有广播和大面积掩盖的特点。在移动通信环境的电波掩盖区内,建立用户之间的无线信道连接,是无线多址接入方式,属于多址接入技术。联通CDMA(CodeDivisionMUltiPIeACCeSS)就是码分复用的一种方式,称为码分多址,此外还有频分多址(FDMA)、时分多址(TDMA)和同步码分多址(SCDMA)。(I)FDMAFDMA频分多址采纳调频的多址技术,业务信道在不同的频段安排给不同的用户。FDMA适合大量连续非突发性数据的接入,单纯采纳FDMA作为多址接入方式已经很少见。目前中国联通、中国移动所使用的GSM移动电话网就是采纳FDMA和TDMA两种方式的结合。(2)TDMA时分多址TDMA时分多址采纳了时分的多址技术,将业务信道在不同的时间段安排给不同的用户CTDMA的优点是频谱采用率高,适合支持多个突发性或低速率数据用户的接入。除中国联通、中国移动所使用的GSM移动电话网采纳FDMA和TDMA两种方式的结合外,广电HFC网中的CM与CMTS的通信中也采纳了时分多址的接入方式(基于DOCSlS1.0或1.1和EruoDOCSlS1.0或1.1)。(3)CDMA码分多址CDMA是采纳数字技术的分支扩频通信技术进展起来的一种崭新而成熟的无线通信技术,它是在FDM和TDM的基础上进展起来的。FDM的特点是信道不独占,而时间资源共享,每一子信道使用的频带互不重叠;TDM的特点是独占时隙,而信道资源共享,每一个子信道使用的时隙不重强;CDMA的特点是全部子信道在同一时间可以使用整个信道进行数据传输,它在信道与时间资源上均为共享,因此,信道的效率高,系统的容量大。CDMA的技术原理是基于扩频技术,即将需传送的具有肯定信号带宽的信息数据用一个带宽远大于信号带宽的高速伪随机码(PN)进行调制,使原数据信号的带宽被扩展,再经载波调制并发送出去;接收端使用完全相同的伪随机码,与接收的带宽信号作相关处理,把宽带信号换成原信息数据的窄带信号即解扩,以实现信息通信。CDMA码分多址技术完全适合现代移动通信网所要求的大容量、高质量、综合业务、软切换等,正受到越来越多的运营商和用户的青睐。(4)同步码分多址技术同步码分多址(SCDMA,SynchrnousCodeDivisionMultiplexingACCeSS)指伪随机码之间是同步正交的,既可以无线接入也可以有线接入,应用较广泛。广电HFC网中的CM与CMTS的通信中就用到该项技术,例如美国泰立洋公司(TerayOn)和北京凯视通电缆电视宽带接入,结合ATDM(高级时分多址)和SCDMA上行信道通信(基于DOCSIS2.0或EruoDOCSIS2.0)o中国第3代移动通信系统也采纳同步码分多址技术,它意味着代表全部用户的伪随机码在到达基站时是同步的,由于伪随机码之间的同步正交性,可以有效地消退码间干扰,系统容量方面将得到极大的改善,它的系统容量是其他第3代移动通信标准的45倍。5空分复用空分复用(SDM,SPaCeDiViSiOnMUltiPleXing)即多对电线或光纤共用1条缆的复用方式。比如5类线就是4对双绞线共用1条缆,还有市话电缆(几十对)也是如此。能够实现空分复用的前提条件是光纤或电线的直径很小,可以将多条光纤或多对电线做在一条缆内,既节省外护套的材料又便于使用。6统计复用统计复用(SDM,StatisticalDivisionMUltiPIeXing)有时也称为标记复用、统计时分多路复用或智能时分多路复用,实际上就是所谓的带宽动态安排。统计复用从本质上讲是异步时分复用,它能动态地将时隙按需安排,而不采纳时分复用使用的固定时隙安排的形式,依据信号源是否需要发送数据信号和信号本身对带宽的需求状况来安排时隙,主要应用场合有数字电视节目复用器和分组交换网等,下面就以这两种主要应用分别叙述。6.1 数字电视节目复用器数字电视节目复用器主要完成对MPEG-2传输流(TS)的再复用功能,形成多节目传送流(MPTS),用于数字电视节目的传输任务。所谓统计复用是指被复用的各个节目传送的码率不是恒定的,各个节目之间实行按图像简单程度安排码率的原则。由于每个频道(标准或增补)能传多个节目,各个节目在同一时刻图像简单程度不一样(一样的概率很小),所以我们可以在同一频道内各个节目之间按图像简单程度安排码率,实现统计复用。实现统计复用的关键因素:一是如何对图像序列随时进行简单程度评估,有主观评估和客观评估两种方法;二是如何适时地进行视频业务的带宽动态安排。使用统计复用技术可以提高压缩效率,改进图像质量,便于在1个频道中传输多套节目,节省传输成本。6.2 分组交换网分组交换网是继电路交换网和报文交换网之后的一种新型交换网络,它主要用于数据通信,如X.25,赖中继,DPT,SDH,GE和ATM都是分组交换的例子。分组交换是一种存储转发的交换方式,它将用户的报文划分成肯定长度的分组(可以定长和不定长),以分组为存储转发。因此,它比电路交换的采用率高,比报文交换的时延小,具有实时通信的力量。分组交换采用统计时分复用原理,将1条数据链路复用成多个规律信道,最终构成1条主叫、被叫用户之间的信息传送通路,称之为虚电路(即VC,两个用户终端设施在开头相互发送和接收数据之前需要通过网络建立规律上的连接),实现数据的分组传送。分组交换网中有的支持统计复用,有的不支持统计复用,例如SDH就不支持统计免用,其带宽是固定不变的,支持统计复用技术的主要有帧中继、ATM和IP,下面作分别介绍。(1)帧中继帧中继是在X.25分组交换技术基础上进展起来的一种快速分组交换传输技术,用户信息以帧(可变长)为单位进行传输,并对用户信息流进行统计复用。(2)ATMATM支持面对连接(非物理的规律连接)的业务,具有很大的敏捷性,可依据多媒体业务实际需要动态安排通信资源,对于特定业务,传送速率随信息到达的速率而变化,因此,ATM具有统计复用的力量,能够适应任何类型的业务。(3)DPTDPT(DynamicPacketTranSPort)是Sisco公司独创的新一代优化动态分组的传输技术,汲取了SDH的优点而克服其缺点,将IP路由技术对宽带的高效采用以及丰富的业务融合力量,和光纤环路的高带宽及牢靠的自愈功能紧密结合,由于全部节点都具有公正机制且支持带宽统计复用,可成倍提高网络可用带宽。(4)吉位以太网GE(GigabitEthernet)是以太网技术的延长,是第3代以太网,它主要处理数据业务,是目前广电宽带城域骨干网采纳的主流技术。以太网交换机端口(RJ45)所带的用户信道使用率通常是不相同的,常常会消失有的信道很忙,有的信道处于空闲状态,即便是以太网交换机全部的端口都处于通信状态下,还会涉及到带宽的不同需求问题,而数据交换的特性在于突发性,只有通过统计复用,即带宽动态安排才能降低忙闲不一的现象,从而最大限度地采用网络带宽。7字节间插复用在SDH(SynchronousDigitalHierarChy)中复用是指将低阶通道层信号适配进高阶通道,或将多个高阶通道层信号适配进复用段的过程。我们知道SDH复用有标准化的复用结构,但每个我国或地区仅有一种复用路线图,由硬件和软件结合来实现,敏捷便利。而字节间插复用(BlDM,ByteIntertextureDivisionMultiplexing)是SDH中低级别的同步传送模块(STM,SynchronousTransportMOdUle)向高级别同步传送模块复用的一种方式,高级别的STM是低级别STM的4倍。如图1所示的4个STM-1字节间插复用进STM-4的示意图,当然4个STM-4字节间插复用进STM-16也一样,其余等级的同步传送模块以此类推。这里的字节间插是指有规律地分别从4个STM-I中抽出1个字节放进STM-4中。进行字节间插复用,一是体现了SDH同步复用的设计思想;二是由AU-PTR(管理单元指针)的值,再通过字节间插的规律性,就可以定位低速信号在高速信号中的位置,使低速信号可以便利地分出或插入高速信号,这也是SDH与PDH相比较的优势之一,由于PDH低速信号在高速信号中位置的无规律性,从而高速信号插/分低速信号要一级一级进行复用/解复用,由于复用/解复用会增加信号的损伤,不利于大容量传输。8极化波复用极化波复用(PoIariZatiOnWavelengthDivisionMIlItiPIeXing)是卫星系统中采纳的复用技术,即一个馈源能同时接收两种极化方式的波束,如垂直极化和水平极化,左旋圆极化和右旋圆极化。卫星系统中通常采纳两种方法来实现频率复用:一种是同一频带采纳不同极化,如垂直极化和水平极化,左旋圆极化和右旋圆极化等;另一种是不同波束内重复使用同一频带,此方法广泛使用于多波束系统中。