欢迎来到课桌文档! | 帮助中心 课桌文档-建筑工程资料库
课桌文档
全部分类
  • 党建之窗>
  • 感悟体会>
  • 百家争鸣>
  • 教育整顿>
  • 文笔提升>
  • 热门分类>
  • 计划总结>
  • 致辞演讲>
  • 在线阅读>
  • ImageVerifierCode 换一换
    首页 课桌文档 > 资源分类 > DOC文档下载  

    控制系统仿真及CAD实验报告.doc

    • 资源ID:61461       资源大小:62KB        全文页数:25页
    • 资源格式: DOC        下载积分:10金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要10金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    控制系统仿真及CAD实验报告.doc

    -"控制系统仿真与CAD"实验课程报告一、实验教学目标与根本要求上机实验是本课程重要的实践教学环节。实验的目的不仅仅是验证理论知识,更重要的是通过上机加强学生的实验手段与实践技能,掌握应用MATLAB/Simulink 求解控制问题的方法,培养学生分析问题、解决问题、应用知识的能力和创新精神,全面提高学生的综合素质。通过对MATLAB/Simulink进展求解,根本掌握常见控制问题的求解方法与命令调用,更深入地认识和了解MATLAB语言的强大的计算功能与其在控制领域的应用优势。上机实验最终以书面报告的形式提交,作为期末成绩的考核容。二、题目及解答第一局部:MATLAB 必备根底知识、控制系统模型与转换、线性控制系统的计算机辅助分析1.>>f=inline('-*(2)-*(3);*(1)+a*(2);b+(*(1)-c)*(3)','t','*','flag','a','b','c');t,*=ode45(f,0,100,0;0;0,0.2,0.2,5.7);plot3(*(:,1),*(:,2),*(:,3),grid,figure,plot(*(:,1),*(:,2),grid2.>>y=(*)*(1)2-2*(1)+*(2);ff=optimset;ff.LargeScale='off'ff.TolFun=1e-30;ff.Tol*=1e-15;ff.TolCon=1e-20;*0=1;1;1;*m=0;0;0;*M=;A=;B=;Aeq=;Beq=;*,f,c,d=fmincon(y,*0,A,B,Aeq,Beq,*m,*M,wzhfc1,ff)Warning: Options LargeScale = 'off' and Algorithm ='trust-region-reflective' conflict.Ignoring Algorithm and running active-set algorithm. To runtrust-region-reflective, setLargeScale = 'on'. To run active-set without this warning, useAlgorithm = 'active-set'. > In fmincon at 456 Local minimum possible. Constraints satisfied.fmincon stopped because the size of the current search direction is less thantwice the selected value of the step size tolerance and constraints are satisfied to within the selected value of the constraint tolerance.<stopping criteria details>Active inequalities (to within options.TolCon = 1e-20): lower upper ineqlin ineqnonlin 2 * = 1.0000 0 1.0000f = -1.0000c = 4d = iterations: 5funcCount: 20lssteplength: 1stepsize: 3.9638e-26algorithm: 'medium-scale: SQP, Quasi-Newton, line-search'firstorderopt: 7.4506e-09constrviolation: 0message: 1*766 char3.(a) >> s=tf('s');G=(s3+4*s+2)/(s3*(s2+2)*(s2+1)3+2*s+5)G = s3 + 4 s + 2 - s11 + 5 s9 + 9 s7 + 2 s6 + 12 s5 + 4 s4 + 12 s3 Continuous-time transfer function.(b)>> z=tf('z',0.1);H=(z2+0.568)/(z-1)*(z2-0.2*z+0.99)H = z2 + 0.568 - z3 - 1.2 z2 + 1.19 z - 0.99Sample time: 0.1 secondsDiscrete-time transfer function.4.>> A=0 1 0;0 0 1;-15 -4 -13;B=0 0 2'C=1 0 0;D=0;G=ss(A,B,C,D),Gs=tf(G),Gz=zpk(G)G =a = *1 *2 *3 *1 0 1 0 *2 0 0 1 *3 -15 -4 -13b = u1 *1 0 *2 0 *3 2c = *1 *2 *3 y1 1 0 0d = u1 y1 0Continuous-time state-space model.Gs = 2 - s3 + 13 s2 + 4 s + 15 Continuous-time transfer function.Gz = 2 - (s+12.78) (s2 + 0.2212s + 1.174) Continuous-time zero/pole/gain model.5.设采样周期为0.01s>> z=tf('z',0.01);H=(z+2)/(z2+z+0.16)H = z + 2 - z2 + z + 0.16 Sample time: 0.01 secondsDiscrete-time transfer function.6.>> syms J Kp Ki s;G=(s+1)/(J*s2+2*s+5);Gc=(Kp*s+Ki)/s;GG=feedback(G*Gc,1)GG =(Ki + Kp*s)*(s + 1)/(J*s3 + (Kp + 2)*s2 + (Ki + Kp + 5)*s + Ki)7.(a)>>s=tf('s');G=(211.87*s+317.64)/(s+20)*(s+94.34)*(s+0.1684);Gc=(169.6*s+400)/(s*(s+4);H=1/(0.01*s+1);GG=feedback(G*Gc,H),Gd=ss(GG),Gz=zpk(GG)GG =359.3 s3 + 3.732e04 s2 + 1.399e05 s + 127056 - 0.01 s6 + 2.185 s5 + 142.1 s4 + 2444 s3 + 4.389e04 s2 + 1.399e05 s + 127056Continuous-time transfer function.Gd = a = *1 *2 *3 *4 *5 *6 *1 -218.5 -111.1 -29.83 -16.74 -6.671 -3.029 *2 128 0 0 0 0 0 *3 0 64 0 0 0 0 *4 0 0 32 0 0 0 *5 0 0 0 8 0 0 *6 0 0 0 0 2 0 b = u1 *1 4 *2 0 *3 0 *4 0 *5 0 *6 0 c = *1 *2 *3 *4 *5 *6 y1 0 0 1.097 3.559 1.668 0.7573 d = u1 y1 0Continuous-time state-space model.Gz =35933.152 (s+100) (s+2.358) (s+1.499) - (s2 + 3.667s + 3.501) (s2 + 11.73s + 339.1) (s2 + 203.1s + 1.07e04)Continuous-time zero/pole/gain model.(b)设采样周期为0.1s>>z=tf('z',0.1);G=(35786.7*z2+108444*z3)/(1+4*z)*(1+20*z)*(1+74.04*z);Gc=z/(1-z);H=z/(0.5-z);GG=feedback(G*Gc,H),Gd=ss(GG),Gz=zpk(GG)GG = -108444 z5 + 1.844e04 z4 + 1.789e04 z3 - 1.144e05 z5 + 2.876e04 z4 + 274.2 z3 + 782.4 z2 + 47.52 z + 0.5 Sample time: 0.1 secondsDiscrete-time transfer function.Gd = a = *1 *2 *3 *4 *5 *1 -0.2515 -0.00959 -0.1095 -0.05318 -0.01791 *2 0.25 0 0 0 0 *3 0 0.25 0 0 0 *4 0 0 0.125 0 0 *5 0 0 0 0.03125 0 b = u1 *1 1 *2 0 *3 0 *4 0 *5 0 c = *1 *2 *3 *4 *5 y1 0.3996 0.6349 0.1038 0.05043 0.01698 d = u1 y1 -0.9482Sample time: 0.1 secondsDiscrete-time state-space model.Gz = -0.94821 z3 (z-0.5) (z+0.33) - (z+0.3035) (z+0.04438) (z+0.01355) (z2 - 0.11z + 0.02396) Sample time: 0.1 secondsDiscrete-time zero/pole/gain model.8.>>s=tf('s');g1=1/(s+1);g2=s/(s2+2);g3=1/s2;g4=(4*s+2)/(s+1)2;g5=50;g6=(s2+2)/(s3+14);G1=feedback(g1*g2,g4);G2=feedback(g3,g5);GG=3*feedback(G1*G2,g6)GG = 3 s6 + 6 s5 + 3 s4 + 42 s3 + 84 s2 + 42 s -s10 + 3 s9 + 55 s8 + 175 s7 + 300 s6 + 1323 s5 + 2656 s4 + 3715 s3 + 7732 s2 + 5602 s + 1400Continuous-time transfer function.9.>>s=tf('s');T0=0.01;T1=0.1;T2=1;G=(s+1)2*(s2+2*s+400)/(s+5)2*(s2+3*s+100)*(s2+3*s+2500);Gd1=c2d(G,T0),Gd2=c2d(G,T1),Gd3=c2d(G,T2),step(G),figure,step(Gd1),figure,step(Gd2),figure,step(Gd3)Gd1 = 4.716e-05 z5 - 0.0001396 z4 + 9.596e-05 z3 + 8.18e-05 z2 - 0.0001289 z + 4.355e-05 - z6 - 5.592 z5 + 13.26 z4 - 17.06 z3 + 12.58 z2 - 5.032 z + 0.8521Sample time: 0.01 secondsDiscrete-time transfer function.Gd2 = 0.0003982 z5 - 0.0003919 z4 - 0.000336 z3 + 0.0007842 z2 - 0.000766 z + 0.0003214 - z6 - 2.644 z5 + 4.044 z4 - 3.94 z3 + 2.549 z2 - 1.056 z + 0.2019Sample time: 0.1 secondsDiscrete-time transfer function.Gd3 =8.625e-05 z5 - 4.48e-05 z4 + 6.545e-06 z3 + 1.211e -05 z2 - 3.299e-06 z + 1.011e-07 - z6 - 0.0419 z5 - 0.07092 z4 - 0.0004549 z3 + 0.002495 z2 - 3.347e-05 z + 1.125e-07Sample time: 1 secondsDiscrete-time transfer function.10.(a)>> G=tf(1,1 2 1 2);eig(G),pzmap(G)ans = -2.0000 -0.0000 + 1.0000i -0.0000 - 1.0000i系统为临界稳定。(b) >> G=tf(1,6 3 2 1 1);eig(G),pzmap(G)ans = -0.4949 + 0.4356i -0.4949 - 0.4356i 0.2449 + 0.5688i 0.2449 - 0.5688i有一对共轭复根在右半平面,所以系统不稳定。(c) >> G=tf(1,1 1 -3 -1 2);eig(G),pzmap(G)ans = -2.0000 -1.0000 1.00001.0000有两根在右半平面,故系统不稳定。11.(1) >> H=tf(-3 2,1 -0.2 -0.25 0.05);pzmap(H),abs(eig(H')ans = 0.5000 0.50000.2000系统稳定。(2) >> H=tf(3 -0.39 -0.09,1 -1.7 1.04 0.268 0.024);pzmap(H),abs(eig(H')ans = 1.1939 1.1939 0.12980.1298系统不稳定。12.(1)>> A=-0.2 0.5 0 0 0;0 -0.5 1.6 0 0;0 0 -14.3 85.8 0;0 0 0 -33.3 100;0 0 0 0 -10;B=0 0 0 0 30'C=zeros(1,5);D=0;G=ss(A,B,C,D),eig(G)G =a = *1 *2 *3 *4 *5 *1 -0.2 0.5 0 0 0 *2 0 -0.5 1.6 0 0 *3 0 0 -14.3 85.8 0 *4 0 0 0 -33.3 100 *5 0 0 0 0 -10 b = u1 *1 0ans = -0.2000 -0.5000 -14.3000 -33.3000 -10.0000 *2 0 *3 0 *4 0 *5 30 c = *1 *2 *3 *4 *5y1 0 0 0 0 0 d = u1 y1 0Continuous-time state-space model.系统稳定。13.>> A=-5 2 0 0; 0 -4 0 0; -3 2 -4 -1; -3 2 0 -4; A=sym(A);syms t;*=e*pm(A*t)*1;2;0;1* =4*e*p(-4*t) - 3*e*p(-5*t)2*e*p(-4*t)12*e*p(-4*t) - 18*e*p(-5*t) + 3*t*e*p(-4*t) - 4*t2*(e*p(-4*t)/(4*t) + e*p(-4*t)/(2*t2) + 8*t2*(e*p(-4*t)/2 - e*p(-4*t)/(2*t) - 16*t*(e*p(-4*t) - e*p(-4*t)/(2*t)6*e*p(-4*t) - 9*e*p(-5*t) - 8*t*(e*p(-4*t) - e*p(-4*t)/(2*t)>> G=ss(-5 2 0 0; 0 -4 0 0; -3 2 -4 -1; -3 2 0 -4,1;2;0;1,eye(4),zeros(4,1);tt=0:0.01:2; *=;for i=1:length(tt)t=tt(i); *=* eval(*);endy=impulse(G,tt); plot(tt,*,tt,y,':')解析解和数值解的脉冲响应曲线如下图,可以看出他们完全一致。14.(a) >> s=tf('s');G=(s+6)*(s-6)/(s*(s+3)*(s+4-4j)*(s+4+4j);rlocus(G),grid不存在K使得系统稳定。(b) >> G=tf(1,2,2,1 1 14 8 0);rlocus(G),grid放大根轨迹图像,可以看到,根轨迹与虚轴交点处,K值为5.53,因此,0<K<5.53时,系统稳定。15.pade_app.mfunction Gr=pade_app(c,r,k)w=-c(r+2:r+k+1)'vv=c(r+1:-1:1)'zeros(k-1-r,1);W=rot90(hankel(c(r+k:-1:r+1),vv);V=rot90(hankel(c(r:-1:1);*=1 (Ww)'dred=*(k+1:-1:1)/*(k+1);y=c(1) *(2:r+1)*V'+c(2:r+1);nred=y(r+1:-1:1)/*(k+1);Gr=tf(nred,dred);paderm.mfunction n,d=paderm(tau,r,k)c(1)=1;for i=2:r+k+1,c(i)=-c(i-1)*tau/(i-1);endGr=pade_app(c,r,k);n=Gr.num1(k-r+1:end);d=Gr.den1;>> tau=2;n,d=paderm(tau,1,3);s=tf('s');G=tf(n,d)*(s-1)/(s+1)5,rlocus(G)G =-1.5 s2 + 4.5 s - 3 - s8 + 8 s7 + 29.5 s6 + 65.5 s5 + 95 s4 + 91 s3 + 55.5 s2 + 19.5 s + 3Continuous-timetransferfunction.由图得0<K<3.68能够使得闭环系统稳定。16.(a)>>s=tf('s');G=8*(s+1)/(s2*(s+15)*(s2+6*s+10);bode(G),figure,nyquist(G),figure,nichols(G),Gm,y,wcg,wcp=margin(G),figure,step(feedback(G,1)Gm = 30.4686y = 4.2340wcg = 1.5811wcp =0.2336系统稳定。(b)>>z=tf('z');G=0.45*(z+1.31)*(z+0.054)*(z-0.957)/(z*(z-1)*(z-0.368)*(z-0.99);bode(G),figure,nyquist(G),figure,nichols(G),Gm,y,wcg,wcp=margin(G),figure,step(feedback(G,1)Warning: The closed-loop system is unstable. > In warning at 26 In DynamicSystem.margin at 63 Gm = 0.9578y = -1.7660wcg = 1.0464wcp =1.0734系统不稳定。17.>>s=tf('s');G=100*(1+s/2.5)/(s*(1+s/0.5)*(1+s/50);Gc=1000*(s+1)*(s+2.5)/(s+0.5)*(s+50);GG=G*Gc;nyquist(GG),grid,figure,bode(GG),figure,nichols(GG),grid,figure,step(feedback(GG,1)由奈氏图可得,曲线不包围(-1,j0)点,而开环系统不含有不稳定极点,所以根据奈氏稳定判据闭环系统是稳定的。用阶跃响应来验证,可得系统是稳定的。第二局部:Simulink 在系统仿真中的应用、控制系统计算机辅助设计、控制工程中的仿真技术应用2.>> syms y t;y=dsolve('D4y+5*D3y+6*D2y+4*Dy+2*y=e*p(-3*t)+e*p(-5*t)*sin(4*t+pi/3)','y(0)=1','Dy(0)=1/2','D2y(0)=1/2','D3y(0)=1/5');tt=0:.05:10; yy=;for k=1:length(tt)ti=tt(k);yy=yy subs(y,'t',ti);endplot(tout,yout,tt,yy,':')3.输出曲线及误差曲线4.5.>> A,B,C,D=linmod('part2_5');G=ss(A,B,C,D)Warning: Using a default value of 0.2 for ma*imum step size. The simulation stepsize will be equal to or less than this value. You can disable this diagnostic bysetting 'Automatic solver parameter selection' diagnostic to 'none' in theDiagnostics page of the configuration parameters dialog.> In dlinmod at 172 In linmod at 60a = *1 *2 *3 *4 *5 *6 *1 0 0 0 0 0 0 *2 0 -100 0 0 0 0 *3 130 0 -100 0 0 0 *4 0 200 -0.88 -100 0 0 *5 0 0 0 0 -100 0 *6 0 0 0 294.1 -29.41 -149.3 *7 0 100 -0.44 0 0 0 *8 -27.56 0 0 0 0 1.045e+004 *9 0 0 0 100 -10 0 *10 0 0 0 0 0 0 *7 *8 *9 *10 *1 0 1.4 0 0 *2 0 0 0 0 *3 0 0 0 0 *4 11.76 0 0 0 *5 0 1.4 0 0 *6 0 0 19.61 0 *7 0 0 0 0 *8 0 -6.667 0 0 *9 0 0 0 0 *10 0 0 0 0b = u1 *1 0 *2 1 *3 0 *4 0 *5 0 *6 0 *7 0 *8 0 *9 0 *10 0c = *1 *2 *3 *4 *5 *6 *7 *8 *9 *10 y1 130 0 0 0 0 0 0 0 0 0d = u1 y1 0Continuous-time model.>>subplot(221),step(G),grid,subplot(222),bode(G),grid,subplot(223),nyquist(G),grid,subplot(224),nichols(G),grid阶跃响应和频率响应曲线6.>>s=tf('s');G=210*(s+1.5)/(s+1.75)*(s+16)*(s2+3*s+11.25);Gc=52.5*(s+1.5)/(s+14.86);GG=feedback(G*Gc,1);step(feedback(G,1),figure,step(GG),*lim(85 95)>> Gm,garma,wcg,wcp=margin(G)Gm = 4.8921garma = 60.0634wcg = 7.9490wcp = 3.9199>> Gm,garma,wcg,wcp=margin(G*Gc)Warning: The closed-loop system is unstable. > In warning at 26 In DynamicSystem.margin at 63 Gm = 0.8090garma = -6.0615wcg = 17.1659wcp = 18.90297.>>A=0 1 0 0;0 0 1 0;-3 1 2 3;2 1 0 0;B=1 0;2 1;3 2;4 3;Q=diag(1 2 3 4);R=eye(2);K,P=lqr(A,B,Q,R),eig(A-B*K)K = -0.0978 1.2118 1.8767 0.7871 -3.8819 -0.4668 2.6713 1.0320P = 5.4400 0.6152 -2.3163 0.0452 0.6152 1.8354 -0.0138 -0.7582 -2.3163 -0.0138 1.9214 -0.3859 0.0452 -0.7582 -0.3859 0.8540ans = -12.2563 -1.6786 + 0.9981i -1.6786 - 0.9981i -1.46278.>> A=-0.2 0.5 0 0 0;0 -0.5 1.6 0 0;0 0 -14.3 85.8 0;0 0 0 -33.3 100;0 0 0 0 -10;B=0 0 0 0 30'C=1 0 0 0 0;P=-1 -2 -3 -4 -5;K=acker(A,B,P)K =0.0004 0.0004 -0.0035 0.3946 -1.4433>> eig(A-B*K)ans = -5.0000 -4.0000 -3.0000 -2.0000 -1.0000>> A=-0.2 0.5 0 0 0;0 -0.5 1.6 0 0;0 0 -14.3 85.8 0;0 0 0 -33.3 100;0 0 0 0 -10;B=0 0 0 0 30'C=1 0 0

    注意事项

    本文(控制系统仿真及CAD实验报告.doc)为本站会员(夺命阿水)主动上传,课桌文档仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知课桌文档(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-1

    经营许可证:宁B2-20210002

    宁公网安备 64010402000986号

    课桌文档
    收起
    展开