七级数学上册一元一次方程应用题专题讲解超全.doc
-
资源ID:6505
资源大小:161KB
全文页数:11页
- 资源格式: DOC
下载积分:10金币
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
七级数学上册一元一次方程应用题专题讲解超全.doc
-七年级上册应用题专题讲解一、列方程解应用题的一般步骤解题思路1审审题:认真审题,弄清题意,找出能够表示此题含义的相等关系找出等量关系2设设出未知数:根据提问,巧设未知数3列列出方程:设出未知数后,表示出有关的含字母的式子,然后利用已找出的等量关系列出方程4解解方程:解所列的方程,求出未知数的值5答检验,写答案:检验所求出的未知数的值是否是方程的解,是否符合实际,检验后写出答案注意带上单位二、各类题型解法分析一元一次方程应用题归类聚集:行程问题,工程问题,和差倍分问题生产、做工等各类问题,等积变形问题,调配问题,分配问题,配套问题,增长率问题,数字问题,方案设计与本钱分析 ,古典数学,浓度问题等。一和、差、倍、分问题读题分析法这类问题主要应搞清各量之间的关系,注意关键词语。仔细读题,找出表示相等关系的关键字,例如:"大,小,多,少,是,共,合,为,完成,增加,减少,配套,利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程.1.倍数关系:通过关键词语"是几倍,增加几倍,增加到几倍,增加百分之几,增长率来表达。2.多少关系:通过关键词语"多、少、和、差、缺乏、剩余来表达。增长量原有量×增长率 现在量原有量增长量例1*单位今年为灾区捐款2万5千元,比去年的2倍还多1000元,去年该单位为灾区捐款多少元.解:设去年该单位为灾区捐款*元,则2*+1000=25000 2*=24000 *=12000答:去年该单位为灾区捐款12000元.例2旅行社的一辆汽车在第一次旅程中用去油箱里汽油的25%,第二次旅程中用去剩余汽油的40%,这样油箱中剩的汽油比两次所用的汽油少1公斤,求油箱里原有汽油多少公斤.解:设油箱里原有汽油*公斤,则 *-25%*+40%×(1-25%)*+1=25%*+40%×(1-25%)* 即 10%*=1 *=10答:油箱里原有汽油10公斤.二等积变形问题等积变形是以形状改变而体积不变为前提。常用等量关系为:原料体积=成品体积。常见几何图形的面积、体积、周长计算公式,依据形虽变,但体积不变圆柱体的体积公式 V=底面积×高S·h长方体的体积 V长×宽×高abc例3现有直径为0.8米的圆柱形钢坯30米,可足够锻造直径为0.4米,长为3米的圆柱形机轴多少根.解:设可足够锻造直径为0.4米,长为3米的圆柱形机轴*根,则 3.14××3*=3.14××30 0.12*=4.8 *=40答:可足够锻造直径为0.4米,长为3米的圆柱形机轴40根。三数字问题1.要搞清楚数的表示方法:一个三位数,一般可设百位数字为a,十位数字是b,个位数字为c其中a、b、c均为整数,且1a9, 0b9, 0c9,则这个三位数表示为:100a+10b+c2.数字问题中一些表示:两个连续整数之间的关系,较大的比较小的大1;偶数用2n表示,连续的偶数用2n+2或2n-2表示;奇数用2n+1或2n1表示。例4有一个三位数,个位数字为百位数字的2倍,十位数字比百位数字大1,假设将此数个位与百位顺序对调个位变百位所得的新数比原数的2倍少49,求原数。解:设原数百位数为*,则十位数为10(*+1),个位数为2* ,于是 100× 2* +10×(*+1)+*+49=2×100*+10(*+1)+2* 即 211*+59=224*+20 13*=39 *=3 故原数为:100×2+10×4+2×3=246答:原数为246.例5一个三位数,三个数位上的数字之和是17,百位上的数比十位上的数大7,个位上的数 是十位上的数的3倍,求这个三位数.分析由条件给出了百位和个位上的数的关系,假设设十位上的数为*,则百位上的数为*+7,个位上的数是3*,等量关系为三个数位上的数字和为17。解:设这个三位数十位上的数为*,则百位上的数为*+7,个位上的数是3*,则 *+*+7+3*=17 解得 *=2 *+7=9,3*=6 答:这个三位数是926。四商品利润问题市场经济问题或利润赢亏问题1销售问题中常出现的量有:进价(或本钱)、售价、标价或定价、利润等。2利润问题常用等量关系:商品利润商品售价商品进价商品标价×折扣率商品进价3商品销售额商品销售价×商品销售量商品的销售利润销售价本钱价× 销售量4商品打几折出售,就是按原标价的百分之几十出售,如商品打8折出售,即按原标价的80%出售即商品售价=商品标价×折扣率例6:一家商店将*种服装按进价提高40%后标价,又以8折优惠卖出,结果每件仍获 利15元,这种服装每件的进价是多少.分析探究题目中隐含的条件是关键,可直接设出本钱为*元,进价折扣率标价优惠价利润*元8折1+40%*元80%1+40%*15元等量关系:利润=折扣后价格进价折扣后价格进价=15解:设这种服装每件的进价为*元,则80%*1+40%*=15, 解得*=125答:这种服装每件的进价是125元。例6*:*商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折出售,但要保持利润率不低于5%,则至多打几折. 解:设至多打*折,则根据题意有×100%=5% 解得 *=0.7=70% 答:至多打7折出售五行程问题画图分析法利用图形分析数学问题是数形结合思想在数学中的表达,仔细读题,依照题意画出有关图形,使图形各局部具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得布列方程的依据,最后利用量与量之间的关系可把未知数看做量,填入有关的代数式是获得方程的根底.1.行程问题中的三个根本量及其关系:路程速度×时间 时间路程÷速度 速度路程÷时间2.行程问题根本类型1相遇问题: 快行距慢行距原距2追及问题: 快行距慢行距原距3航行问题:顺水风速度静水风速度水流风速度 逆水风速度静水风速度水流风速度 水流速度=(顺水速度-逆水速度÷2 4环路问题甲乙同时同地背向而行:甲路程乙路程=环路一周的距离 甲乙同时同地同向而行:快者的路程慢者的路程=环路一周的距离抓住两码头间距离不变,水流速和船速静不速不变的特点考虑相等关系即顺水逆水问题常用等量关系:顺水路程=逆水路程常见的还有:相背而行;行船问题;环形跑道问题。例7:甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里。1慢车先开出1小时,快车再开。两车相向而行。问快车开出多少小时后两车相遇"2两车同时开出,相背而行多少小时后两车相距600公里.3两车同时开出,慢车在快车后面同向而行,多少小时后快车与慢车相距600公里.4两车同时开出同向而行,快车在慢车的后面,多少小时后快车追上慢车.5慢车开出1小时后两车同向而行,快车在慢车后面,快车开出后多少小时追上慢车.(此题关键是要理解清楚相向、相背、同向等的含义,弄清行驶过程。)解析:1分析:相遇问题,画图表示为:等量关系是:慢车走的路程+快车走的路程=480公里。解:设快车开出*小时后两车相遇,由题意得,140*+90(*+1)=480 解这个方程,230*=390答:快车开出小时两车相遇2分析:相背而行,画图表示为:等量关系是:两车所走的路程和+480公里=600公里。解:设*小时后两车相距600公里,由题意得,(140+90)*+480=600解这个方程,230*=120 *=答:小时后两车相距600公里。3分析:等量关系为:快车所走路程慢车所走路程+480公里=600公里。解:设*小时后两车相距600公里,由题意得,(14090)*+480=600 50*=120 *=2.4 答:2.4小时后两车相距600公里。 4分析:追及问题,画图表示为:等量关系为:快车的路程=慢车走的路程+480公里。解:设*小时后快车追上慢车。由题意得,140*=90*+480 解这个方程,50*=480 *=9.6答:9.6小时后快车追上慢车。 5分析:追及问题,等量关系为:快车的路程=慢车走的路程+480公里。解:设快车开出*小时后追上慢车。由题意得,140*=90(*+1)+480 50*=570 *=11.4 答:快车开出11.4小时后追上慢车。例8:一轮船在甲、乙两码头之间航行,顺水航行需要4小时,逆水航行需要5小时,水流的速度为2千米/时,求甲、乙两码头之间的距离。解:设甲、乙两码头之间的距离为*千米,则 *=80答:甲、乙两码头之间的距离为80千米.六工程问题1工程问题中的三个量及其关系为: 工作总量工作效率×工作时间 2经常在题目中未给出工作总量时,设工作总量为单位1。即完成*项任务的各工作量的和总工作量1工程问题常用等量关系:先做的+后做的=完成量例9:将一批工业最新动态信息输入管理储存网络,甲独做需6小时,乙独做需4小时,甲先做30分钟,然后甲、乙一起做,则甲、乙一起做还需多少小时才能完成工作.解:设甲、乙一起做还需*小时才能完成工作 根据题意,得×+*=1 解这个方程,得*=2小时12分 答:甲、乙一起做还需2小时12分才能完成工作例10:一个蓄水池有甲、乙两个进水管和一个丙排水管,单独开甲管6小时可注满水池;单独开乙管8小时可注满水池,单独开丙管9小时可将满池水排空,假设先将甲、乙管同时开放2小时,然后翻开丙管,问翻开丙管后几小时可注满水池.分析等量关系为:甲注水量+乙注水量-丙排水量=1。 解:设翻开丙管后*小时可注满水池,则由题意得,答:翻开丙管后小时可注满水池。例11:一项工程甲单独做需要10天,乙需要12天,丙单独做需要15天,甲、丙先做3天后,甲因事离去,乙参与工作,问还需几天完成.解:设还需*天,则答:还需天完成。七储蓄问题1顾客存入银行的钱叫做本金,银行付给顾客的酬金叫利息,本金和利息合称本息和,存入银行的时间叫做期数,利息与本金的比叫做利率.2储蓄问题中的量及其关系为:利息本金×利率×期数 本息和本金+利息 利息税=利息×税率20%例12:*同学把250元钱存入银行,整存整取,存期为半年。半年后共得本息和252.7元,求银行半年期的年利率是多少.不计利息税分析等量关系:本息和=本金×1+利率解:设半年期的实际利率为*,依题意得方程2501+*=252.7,解得*=0.0108所以年利率为0.0108×2=0.0216 答:银行的年利率是21.6%八配套问题:这类问题的关键是找对配套的两类物体的数量关系。例13:*车间有28名工人生产螺栓和螺母,每人每小时平均能生产螺栓12个或螺母18个,应如何分配生产螺栓和螺母的工人,才能使螺栓和螺母正好配套一个螺栓配两个螺母.解:设生产螺栓的人有*名,则生产螺母的有28-*名工人,于是 2×12*=18×28-* 即 42*=504 *=12 28-*=16答:应分配12名工人生产螺栓,16名工人生产螺母。例14:机械厂加工车间有85名工人,平均每人每天加工大齿轮16个或小齿轮10个,2个大齿轮与3个小齿轮配成一套,问需分别安排多少名工人加工大、小齿轮,才能使每天加工的大小齿轮刚好配套.解:设分配*名工人加工大齿轮,则加工小齿轮的有85-*名工人,于是 16*÷2=10×(85-*)÷3 34*=850 *=25 85-*=60答:应分配25名工人加工大齿轮,60名工人加工小齿轮。九劳力调配问题这类问题要搞清人数的变化,常见题型有:1既有调入又有调出;2只有调入没有调出,调入局部变化,其余不变;3只有调出没有调入,调出局部变化,其余不变。例15*厂一车间有64人,二车间有56人。现因工作需要,要求第一车间人数是第二车间人数的一半。问需从第一车间调多少人到第二车间. 解:设需从第一车间调*人到第二车间,则 2×64-*=56+*即3*=72则 *=24答:需从第一车间调24人到第二车间.例16学校分配学生住宿,如果每室住8人,还少12个床位,如果每室住9人,则空出两个房间。求房间的个数和学生的人数。解:设房间数为*个,则有学生8*+12人,于是 8*+12=9(*-2) 解得 *=30 则 8*+12=252答:房间数为30个,学生252人。十比例分配问题比例分配问题的一般思路为:设其中一份为* ,利用的比,写出相应的代数式。常用等量关系:各局部之和=总量。例17:甲、乙、丙三个人每天生产机器零件数为甲、乙之比为4:3;乙、丙之比为6:5,又知甲与丙的和比乙的2倍多12件,求每个人每天生产多少件.解:设甲每天生产*件,则乙每天生产*件,丙每天生产*件,于是 *+*-12=2×*解得 *=96则 *=72 , *=60答:甲每天生产96件,则乙每天生产72件,丙每天生产60件.十一年龄问题例19:兄弟二人今年分别为15岁和9岁,多少年后兄的年龄是弟的年龄的2倍.解:设*年后,兄的年龄是弟的年龄的2倍, 则*年后兄的年龄是15+*,弟的年龄是9+* 由题意,得 2×9+*=15+* 18+2*=15+* 2*-*=15-18*= -3 答:3年前兄的年龄是弟的年龄的2倍点拨:-3年的意义,并不是没有意义,而是指以今年为起点前的3年,是与3年后具有相反意义的量例20:三位同学甲乙丙,甲比乙大1岁,乙比丙大2岁,三人的年龄之和是41,求乙同学的年龄。解:设乙同学的年龄为*岁,则甲的年龄为*+1岁,丙同学的年龄为*-2岁,于是 *+*+1+*-2= 41即 3*=42 *=14答:乙同学的年龄为14岁,甲同学的年龄为15岁,丙同学的年龄为12岁.十二比赛积分问题例21:*企业对应聘人员进展英语考试,试题由50道选择题组成,评分标准规定:每道题的答案选对得3分,不选得0分,选错倒扣1分。*人有5道题未作,得了103分,则这个人选错了 8 道题。解:设这个人选对了*道题目,则选错了45-*道题,于是 3*-45-*=103 4*=148 解得 *=37则 45-*=8答:这个人选错了8道题.例22:*学校七年级8个班进展足球友谊赛,采用胜一场得3分,平一场得1分,负一场得0分的记分制。*班与其他7个队各赛1场后,以不败的战绩积17分,则该班共胜了几场比赛.解:设该班共胜了*场比赛,则 3*+7-*=17解得 *=5答:该班共胜了5场比赛.(13) 方案选择问题例23:*家电商场方案用9万元从生产厂家购进50台电视机该厂家生产3种不同型号的电视机,出厂价分别为A种每台1500元,B种每台2100元,C种每台2500元1假设家电商场同时购进两种不同型号的电视机共50台,用去9万元,请你研究一下商场的进货方案2假设商场销售一台A种电视机可获利150元,销售一台B种电视机可获利200元,销售一台C种电视机可获利250元,在同时购进两种不同型号的电视机方案中,为了使销售时获利最多,你选择哪种方案.解:按购A,B两种,B,C两种,A,C两种电视机这三种方案分别计算,设购A种电视机*台,则B种电视机y台1中选购A,B两种电视机时,B种电视机购50-*台,可得方程 1500*+210050-*=90000 即 5*+750-*=300 2*=50 *=25 50-*=25中选购A,C两种电视机时,C种电视机购50-*台,可得方程 1500*+250050-*=90000 3*+550-*=1800 *=35 50-*=15当购B,C两种电视机时,C种电视机为50-y台 可得方程 2100y+250050-y=90000 21y+2550-y=900,4y=350,不合题意由此可选择两种方案:一是购A,B两种电视机25台;二是购A种电视机35台,C种电视机15台 2假设选择1中的方案,可获利 150×25+250×15=8750元 假设选择1中的方案,可获利 150×35+250×15=9000元 9000>8750 故为了获利最多,选择第二种方案(14) 古典数学问题例24:100个和尚100个馍,大和尚每人吃两个,小和尚两人吃一个,问有多少大和尚.多少小和尚.解:设有大和尚*人,小和尚100-*人,则 2*+=100解得 *=33答:约有大和尚33人,小和尚67人。例25:有假设干只鸡和兔子,他们共有88个头,244只脚,鸡和兔各有多少只.解:设有鸡*只,兔88-*只,则 2*+4(88-*)=244 *=54则 88-*=34答:有鸡54只,兔34只.(15) 增长率问题例26:民航规定:乘坐飞机普通舱旅客一人最多可免费携带20千克行,超过局部每千克按飞机票价的1.5购置行票。一名旅客带了35千克行乘机,机票连同行费共付了1323元,求该旅客的机票票价。解:设该旅客的机票票价为*元,则 *+15×1.5%*=1323 1.015*=1323 *=1303答:该旅客的机票票价为1303元.(16) 浓度问题 常用等量关系式: .例27:有含盐20%的盐水5千克,要配制成含盐8%的盐水,需加水 7.5 千克。*化工厂现有浓度为15%的稀硫酸175千克,要把它配成浓度为25%的硫酸,需要参加浓度为50的硫酸多少千克.解:(1)设需加水*千克,则 解得 *=7.5(2) 设需要参加浓度为50的硫酸y千克,则 解得 y=70故需要参加浓度为50的硫酸70千克。例28:有甲、乙两种铜和银的合金,甲种合金含银25%,乙种合金含银37.5%,现在要熔制含银30%的合金100千克,两种合金应各取多少.解:设取甲种合金*千克,则需取乙种合金100-*千克,于是 解得 *=60则 100-*=40答:应取甲种合金60千克,则需取乙种合金40千克.2021如图,小明在操场上从A点出发,先沿南偏东30°方向走到B点,再沿南偏东60°方向走到C点这时,ABC的度数是2021如图,ABC中,C=90°,B=40°AD是角平分线,则ADC的度数为2把一个周角7等分,每一份是准确到分A51°28B51°27C51°26D51°256假设1=25°12,2=25.12°,3=25.2°,则下面说确的是A1=2B2=3C1=3D1,2,3互不相等计算72°35÷2+18°33×4=°解:72°35÷2=72°÷2+35÷2=36°+17.5=36°+17+30=36°1730,18°33×4=72°132=74°12,72°35÷2+18°33×4=36°1730+74°12=110°2930故填110°293029 计算:112.42°=°;22点30分时,时钟与分钟所成的角为度解:10.42°=60×0.42=25.2,0.2=60×0.2=12,12.42°=12°+25+12=12°2512;22点30时,时针指向2和3中间,分针指向6钟表12个数字,每相邻两个数字之间的夹角为30°,其一半是15°,2点30时,分针与时针的夹角正好是30°×3+15°=105度故答案为12、25、12、105. z.