欢迎来到课桌文档! | 帮助中心 课桌文档-建筑工程资料库
课桌文档
全部分类
  • 党建之窗>
  • 感悟体会>
  • 百家争鸣>
  • 教育整顿>
  • 文笔提升>
  • 热门分类>
  • 计划总结>
  • 致辞演讲>
  • 在线阅读>
  • ImageVerifierCode 换一换
    首页 课桌文档 > 资源分类 > DOC文档下载  

    习题集-02数字信号处理习题问题详解.doc

    • 资源ID:6524       资源大小:474.50KB        全文页数:12页
    • 资源格式: DOC        下载积分:10金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要10金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    习题集-02数字信号处理习题问题详解.doc

    word§ Z变换Ø Z变换的定义与收敛域【习题】1. 假设的z变换代数表示式是下式,问可能有多少不同的收敛域。【分析】解:对X(Z)的分子和分母进展因式分解得X(Z)的零点为:1/2,极点为:j/2,-j/2,-3/4X(Z)的收敛域为:(1) 1/2 < | Z | < 3/4,为双边序列,见图一(2) | Z | < 1/2,为左边序列,见图二(3) | Z|>3/4,为右边序列,见图三图一 图二 图三Ø Z反变换【习题】2. 有一右边序列,其变换为(a) 将上式作局部分式展开(用表示),由展开式求。(b) 将上式表示成的多项式之比,再作局部分式展开,由展开式求,并说明所得到的序列与(a)所得的是一样的。【注意】不管哪种表示法最后求出 x(n) 应该是一样的。解:(a)因为且x(n)是右边序列所以 (b)Ø Z变换的根本性质和定理【习题】3. 对因果序列,初值定理是,如果序列为 时,问相应的定理是什么?,其z变换为:【分析】这道题讨论如何由双边序列Z变换来求序列初值,把序列分成因果序列和反因果序列两局部,它们各自由求表达式是不同的,将它们各自的相加即得所求。假设序列的Z变换为:由题意可知:X(Z)的收敛域包括单位圆如此其收敛域应该为:4. 有一信号,它与另两个信号和的关系是:其中 , ,【分析】解:根据题目所给条件可得:而所以 Ø Z变换与傅里叶变换的关系【习题】5. 求以下序列的频谱。(1) (2) (3) (4) 【分析】可以先求序列的Z变换再求频率即为单位圆上的Z变换,或者直接求序列的傅里叶变换解:对题中所给的先进展z变换再求频谱得:6. 假设是因果稳定序列,求证:【分析】利用时域卷积如此频域是相乘的关系来求解再利用的傅里叶反变换,代入n=0即可得所需结果。证明:Ø 序列的傅里叶变换【习题】7. 求的傅里叶变换。【分析】这道题利用傅里叶变换的定义即可求解,但最后结果应化为模和相角的关系。解:根据傅里叶变换的概念可得:Ø 傅里叶变换的一些对称性质【习题】8. 设是如如下图所示的信号的傅里叶变换,不必求出,试完成如下计算:(a) (b) (c) (d) 【分析】利用序列傅里叶变换的定义、它的导数以与帕塞瓦公式解:由帕塞瓦尔公式可得:即由帕塞瓦尔公式可得:9. 有傅里叶变换,用表示如下信号的傅里叶变换。(a) (b)(c) 【分析】利用序列翻褶后移位关系以与频域的取导数关系式来求解。解:(c) 如此而所以Ø 离散系统的系统函数,系统的频率响应【习题】10. 用如下差分方程描述的一个线性移不变因果系统(a)求这个系统的系统函数,画出其零极点图并指出其收敛区域;(b)求此系统的单位抽样响应;(c)此系统是一个不稳定系统,请找一个满足上述差分方程的稳定的非因果系统的单位抽样响应。【分析】如此,要求收敛域必须知道零点、极点。收敛域为Z平面某个圆以外,如此为因果系统不一定稳定,收敛域假设包括单位圆,如此为稳定系统不一定因果。解:a对题中给出的差分方程的两边作Z变换,得:所以零点为z=0,极点为,因为是因果系统,所以|z是其收敛区域。零极点图如如下图所示。由于的收敛区域不包括单位圆,故这是个不稳定系统。c假设要使系统稳定,如此收敛区域应包括单位圆,因此选的收敛区域为 ,即,如此中第一项对应一个非因果序列,而第二项对应一个因果序列。从结果可以看出此系统是稳定的,但不是因果的。12 / 12

    注意事项

    本文(习题集-02数字信号处理习题问题详解.doc)为本站会员(夺命阿水)主动上传,课桌文档仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知课桌文档(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-1

    经营许可证:宁B2-20210002

    宁公网安备 64010402000986号

    课桌文档
    收起
    展开