圆的一般方程更新.ppt
4.1.2 圆的一般方程,圆的标准方程:,(x-a)2+(y-b)2=r2,特征:,直接看出圆心与半径,复习,x2 y 2DxEyF0,由于a,b,r均为常数,结论:任何一个圆方程可以写成下面形式,动动手,1.是不是任何一个形如 x2 y 2DxEyF0 方程表示的曲线是圆呢?,思考,2.下列方程表示什么图形?(1)x2+y2-2x+4y+1=0;(2)x2+y2-2x-4y+5=0;(3)x2+y2-2x+4y+6=0.,配方可得:,把方程:x2 y 2DxEyF0,(1)当D2+E2-4F0时,表示以()为圆心,以()为半径的圆.,(2)当D2+E2-4F=0时,方程只有一组解x=-D/2 y=-E/2,表示一个点().,动动脑,(3)当D2+E2-4F0时,方程无实数解,所以不表示任何图形.,所以形如x2 y 2DxEyF0(D2+E2-4F0)可表示圆的方程,圆的一般方程:,x2 y 2DxEyF0,圆的一般方程与标准方程的关系:,(D2+E2-4F0),(1)a=-D/2,b=-E/2,r=,没有xy这样的二次项,(2)标准方程易于看出圆心与半径,一般方程突出形式上的特点:,x2与y2系数相同并且不等于0;,判断下列方程能否表示圆的方程,若能写出圆心与半径,(1)x2+y2-2x+4y-4=0,(2)2x2+2y2-12x+4y=0,(3)x2+2y2-6x+4y-1=0,(4)x2+y2-12x+6y+50=0,(5)x2+y2-3xy+5x+2y=0,是,圆心(1,-2)半径3,是,圆心(3,-1)半径,不是,不是,不是,练习,已知圆 x2+y2+Dx+Ey+F=0的圆心坐标为(-2,3),半径为4,则D,E,F分别等于2.x2+y2-2ax-y+a=0 是圆的方程的充要条件是,练习,圆x2+y2+8x-10y+F=0 与x轴相切,则这个圆截y轴所得的弦长是4.点A(3,5)是圆 x2+y2-4x-8y-80=0 的一条弦的中点,则这条弦所在的直线方程是,练习,举例,例1:求过三点O(0,0),M1(1,1),M2(4,2)的方程,并求出这个圆的半径和圆心坐标.,几何方法,方法一:,圆心:两条弦的中垂线的交点,半径:圆心到圆上一点,因为O(0,0),A(1,1),B(4,2)都在圆上,待定系数法,方法二:,举例,例1:求过三点O(0,0),M1(1,1),M2(4,2)的方程,并求出这个圆的半径和圆心坐标.,举例,例1:求过三点O(0,0),M1(1,1),M2(4,2)的方程,并求出这个圆的半径和圆心坐标.,解:设所求圆的一般方程为:,因为O(0,0),A(1,1),B(4,2)都在圆上,则,即(x-4)2+(y+3)2=25,待定系数法,方法三:,小结,(特殊情况时,可借助图象求解更简单),注意:求圆的方程时,要学会根据题目条件,恰当选择圆的方程形式:,若知道或涉及圆心和半径,我们一般采用圆的标准方程较简单.,若已知三点求圆的方程,我们常常采用圆的一般方程用待定系数法求解.,几何方法,求圆心坐标(两条直线的交点)(常用弦的中垂线),求半径(圆心到圆上一点的距离),写出圆的标准方程,待定系数法,列关于a,b,r(或D,E,F)的方程组,解出a,b,r(或D,E,F),写出标准方程(或一般方程),小结求圆的方程,例2.已知一曲线是与两定点O(0,0)、A(3,0)距离的比为1/2的点的轨迹,求此曲线的方程,并画出曲线.,举例,直接法,例3、由动点P向圆x2+y2=1引两条切线PA、PB,切点分别为A、B,则动点P的轨迹方程为,举例,举例,例4.已知线段AB的端点B的坐标是(4,3),端点A在圆(x+1)2+y2=4上运动,求线段AB的中点M的轨迹方程.,解:设点M的坐标是(x,y),点A的坐标为(x0,y0),由于B点坐标为(4,3),M为AB的中点,所以,整理得,又因为点A在圆上运动,所以A点坐标满足 方程,又有(x0+1)2+y02=4,所以(2x-4+1)2+(2y-3)2=4,整理得,所以,点的轨迹是以()为圆心,为半径的圆,相关点法,相关点法步骤:,例5.已知:一个圆的直径的两端点是A(x1,y1)、B(x2,y2).证明:圆的方程是(x-x1)(x-x2)+(y-y1)(y-y2)=0,C,P,解法一:,求圆心、求半径,解法二:,直接法,P点满足PAPB,即,举例,1定义法:如果动点P的运动规律合乎我们已知的某种曲线(如圆、椭圆、双曲线、抛物线)的定义,则可先设出轨迹方程,再根据已知条件,待定方程中的常数,即可得到轨迹方程。熟悉一些基本曲线的定义是用定义法求曲线方程的关键。,求轨迹方程的常用方法:,2.直接法:如果动点P的运动规律满足的等量关系易于建立,则可以用点P的坐标(x,y)表示该等量关系式,即可得到轨迹方程。(有时要借助相关图形的几何性质),3.相关点法:如果动点P的运动是由另外某一点P的运动引发的,而该点的运动规律已知,(该点坐标满足某已知曲线方程),则可以设出P(x,y),用(x,y)表示出相关点P的坐标,然后把P的坐标代入已知曲线方程,即可得到动点P的轨迹方程。,4.交轨消去参数法:在求动点轨迹时,有时会出现要求两动曲线交点的轨迹问题,这类问题通常通过解方程组得出交点(含参数)的坐标,再消去参数求得所求的轨迹方程(若能直接消去两方程的参数,也可直接消去参数得到轨迹方程),该法经常与参数法并用。,1.本节课的主要内容是圆的一般方程,其表达式为,(用配方法求解),3.给出圆的一般方程,如何求圆心和半径?,2.圆的一般方程与圆的标准方程的联系,一般方程,标准方程(圆心,半径),小结,知识沿深,能力突破,1、一个圆过A(4,2)、B(1,3)两点,且在坐标轴上的四个截距之和为14,求此圆的方程。,2、如图,等腰梯形ABCD底边长分别为6和4,高为3,求这个等腰梯形的外接圆的方程,并求这个圆的圆心坐标和半径长。,