第03章酶.ppt
第 三 章 酶,酶(enzyme)是由活细胞产生的、能对特异底物进行高效率催化的生物催化剂,其化学本质是蛋白质。核酶(ribozyme)具有高效、特异催化作用的核酸(RNA)。主要参与RNA的剪接。,酶催化的生物化学反应,称为酶促反应(Enzymatic reaction)在酶的催化下发生化学变化的物质,称为底物(substrate),第一节酶的分子结构与功能The Molecular Structure and Function of Enzyme,酶的分类(按结构):,单体酶:仅具有三级结构的酶。寡聚酶:由多个相同或不同亚基以非共价键连接组成的酶。多酶复合体:由几种不同功能的酶彼此聚合形成的多酶复合物。多功能酶或串联酶:一些多酶体系在进化过程中由于基因的融合,多种不同催化功能存在于一条多肽链中,这类酶称为多功能酶。,一、酶的分子组成,全酶分子中各部分在催化反应中的作用:,酶蛋白决定反应的特异性;辅助因子决定反应的种类与性质;,金属酶(metalloenzyme)金属离子与酶结合紧密,提取过程中不易丢失。如羧基肽酶、黄嘌呤氧化酶等。金属激活酶(metal-activated enzyme)金属离子为酶的活性所必需,但与酶的结合不甚紧密。如己糖激酶等。,金属离子是最多见的辅助因子,金属离子在全酶中的作用,传电子:作为酶活性中心的催化基团参与催化反应、传递电子。架桥梁:作为连接酶与底物的桥梁,便于酶对底物起作用。稳构象:稳定酶的构象所必需。降斥力:中和阴离子,降低反应中的静电斥力。,小分子有机化合物是一些化学稳定的小分子物质,称为辅酶(coenzyme)。,其主要作用是参与酶的催化过程,在反应中传递电子、质子或一些基团。辅酶的种类不多,且分子结构中常含有维生素或维生素类物质。,辅酶中与酶蛋白共价结合的辅酶又称为辅基(prosthetic group)。,辅基和酶蛋白结合紧密,不能通过透析或超滤等方法将其除去,在反应中不能离开酶蛋白,如FAD、FMN、生物素等。,小分子有机化合物在催化中的作用,二、酶的活性中心,必需基团(essential group)酶分子氨基酸残基侧链的化学基团中,一些与酶活性密切相关的化学基团。,目 录,或称活性部位(active site),指酶的必需基团在一级结构上可能相距很远,但在空间结构上彼此靠近,组成具有特定空间结构的区域,能与底物特异结合并将底物转化为产物的区域。,酶的活性中心(active center),活性中心内的必需基团,位于活性中心以外,维持酶活性中心应有的空间构象所必需。,活性中心外的必需基团,底 物,活性中心以外的必需基团,结合基团,催化基团,活性中心,目 录,三、同工酶,同工酶(isoenzyme)是指催化相同的化学反应,而酶蛋白的分子结构、理化性质乃至免疫学性质不同的一组酶。(一同三不同),同工酶是由不同基因编码的多肽链,或由同一基因转录生成的不同mRNA所翻译的不同多肽链组成的蛋白质。同工酶存在于同一种属或同一个体的不同组织或同一细胞的不同亚细胞结构中,它使不同的组织、器官和不同的亚细胞结构具有不同的代谢特征。这为同工酶用来诊断不同器官的疾病提供了理论依据。,乳酸脱氢酶同工酶(LDHs)为四聚体,在体内共有五种分子形式,即LDH1(H4),LDH2(H3M),LDH3(H2M2),LDH4(HM3)和LDH5(M4)。,同工酶谱的改变有助于对疾病的诊断。,同工酶的临床意义:,第二节 酶的工作原理The Characteristic and Mechanism of Enzyme-Catalyzed Reaction,酶与一般催化剂的共同点在反应前后没有质和量的变化;只能催化热力学允许的化学反应;只能加速可逆反应的进程,缩短反应达到平衡所需的时间,而不改变反应的平衡点。一般情况下,对可逆反应的正反两个方向的催化作用相同。,一、酶促反应的特点,(一)酶促反应具有极高的效率,(二)酶促反应具有高度的特异性,(三)酶促反应的可调节性,(一)酶促反应具有极高的效率,酶的催化效率通常比非催化反应高1081020倍,比一般催化剂高1071013倍。酶的催化不需要较高的反应温度。酶和一般催化剂加速反应的机理都是降低反应的活化能(activation energy)。酶比一般催化剂能更有效地降低反应的活化能。,活化能:底物分子从初态转变到活化态所需的能量。,一种酶仅作用于一种或一类化合物,或一定的化学键,催化一定的化学反应并生成一定的产物。酶的这种特性称为酶的特异性或专一性。,*酶的特异性(specificity),(二)酶促反应具有高度的特异性,根据酶对其底物结构选择的严格程度不同,酶的特异性可大致分为以下3种类型:,绝对特异性(absolute specificity):相对特异性(relative specificity):立体结构特异性(stereo specificity):,(1)绝对特异性,绝对特异性:酶只能作用于特定结构的底物,进行一种专一的反应,生成一种特定结构的产物。这种特异性称为绝对特异性。如:琥珀酸脱氢酶仅催化琥珀酸脱氢生成延胡索酸。,(2)相对特异性,相对特异性:酶作用于一类化合物或一种化学键,这种特异性称相对特异性。这种选择性不太严格(专一性相对较差)。如磷酸酯酶等。相对特异性分为:族类特异性:对底物仅要求其化学键和一侧的基团。键特异性:对底物仅选择性要求其化学键,不要求其键的二侧基团。,(3)立体异构特异性,立体异构特异性:酶仅作用于立体异构体中的一种,酶的这种选择称为立体异构特异性 旋光异构特异性:如精氨酸酶只水解L-精氨酸,不能催化D-精氨酸水解。几何异构特异性:如延胡索酸酶仅催化反丁烯二酸(延胡索酸)生成苹果酸,而对顺丁烯二酸(马来酸)无作用。,酶的立体异构特异性,(三)酶促反应的可调节性,对酶生成与降解量的调节酶催化效力的调节通过改变底物浓度对酶进行调节等,酶促反应受多种因素的调控,以适应机体对不断变化的内外环境和生命活动的需要。其中包括三方面的调节。,二、酶通过促进底物形成过渡态而提高反应速率,(一)酶比一般催化剂更有效地降低反应活化能,酶和一般催化剂一样,加速反应的作用都是通过降低反应的活化能(activation energy)实现的。,活化能:底物分子从初态转变到活化态所需的能量。,活化能:底物分子从初态转变到活化态所需的能量。,(二)酶-底物复合物的形成有利于 底物转变成过渡态,酶底物复合物,(过渡态),1、诱导契合作用使酶与底物密切结合,酶与底物相互接近时,其结构相互诱导、相互变形和相互适应,进而相互结合。这一过程称为酶-底物结合的诱导契合(induced-fit)。,目 录,酶 的 诱 导 契 合 动 画,2.邻近效应与定向排列使诸底物正确定位于酶的活性中心,酶在反应中将诸底物结合到酶的活性中心,使它们相互接近并形成有利于反应的正确定向关系。这种邻近效应(proximity effect)与定向排列(orientation arrange)实际上是将分子间的反应变成类似于分子内的反应,从而提高反应速率。,酶的活性中心多是酶分子内部的疏水“口袋”,酶反应在此疏水环境中进行,使底物分子脱溶剂化(desolvation),排除周围大量水分子对酶和底物分子中功能基团的干扰性吸引和排斥,防止水化膜的形成,利于底物与酶分子的密切接触和结合。这种现象称为表面效应(surface effect)。,3.表面效应使底物分子去溶剂化,(三)酶的催化机制呈多元催化作用,一般酸-碱催化作用(general acid-base catalysis)共价催化作用(covalent catalysis)亲核催化作用(nucleophilic catalysis),第三节酶促反应动力学Kinetics of Enzyme-Catalyzed Reaction,概念研究各种因素对酶促反应速率的影响,并加以定量的阐述。影响因素包括有酶浓度、底物浓度、pH、温度、抑制剂、激活剂等。,研究一种因素的影响时,其余各因素均恒定。,一、底物浓度对反应速率影响的作图呈矩形双曲线,在其他因素不变的情况下,底物浓度对反应速率的影响呈矩形双曲线关系。,单底物、单产物反应;酶促反应速率一般在规定的反应条件下,用单位时间内底物的消耗量和产物的生成量来表示;反应速率取其初速率,即底物的消耗量很小(一般在5以内)时的反应速率底物浓度远远大于酶浓度。,研究前提:,当底物浓度较低时,反应速度与底物浓度成正比;反应为一级反应。,目 录,随着底物浓度的增高,反应速度不再成正比例加速;反应为混合级反应。,目 录,当底物浓度高达一定程度,反应速度不再增加,达最大速度;反应为零级反应,目 录,中间产物,解释酶促反应中底物浓度和反应速率关系的最合理学说是中间产物学说:,(一)米曼氏方程式揭示单底物反应的动力学特性,1913年Michaelis和Menten提出反应速度与底物浓度关系的数学方程式,即米曼氏方程式,简称米氏方程式(Michaelis equation)。,S:底物浓度V:不同S时的反应速度Vmax:最大反应速度(maximum velocity)m:米氏常数(Michaelis constant),1913年Michaelis和Menten推导了米氏方程,E与S形成ES复合物的反应是快速平衡反应,而ES分解为E及P的反应为慢反应,反应速率取决于慢反应即 V=k3ES。(1)S的总浓度远远大于E的总浓度,因此在反应的初始阶段,S的浓度可认为不变即S=St。,米曼氏方程式推导基于两个假设:,(二)Km与Vm是有意义的酶促反应动力学参数,Km值的推导Km与Vmax的意义,当反应速度为最大反应速度一半时,Km值的推导,KmS,Km值等于酶促反应速度为最大反应速度一半时的底物浓度,单位是mol/L。,Km与Vmax的意义,定义:Km等于酶促反应速率为最大反应速率一半时的底物浓度。意义:Km是酶的特征性常数之一,只与酶的结构、底物和反应环境(如,温度、pH、离子强度)有关,与酶的浓度无关。Km可近似表示酶对底物的亲和力;(Km愈小,酶对底物的亲和力愈大)同一酶对于不同底物有不同的Km值。(其中Km最小者,为酶的天然底物),Km值,Vmax定义:Vm是酶完全被底物饱和时的反应速度,与酶浓度成正比。,意义:Vmax=K3 E如果酶的总浓度已知,可从Vmax计算 酶的转换数(turnover number),即动力学常数K3。,定义:当酶被底物充分饱和时,单位时间内每个酶分子催化底物转变为产物的分子数。意义:可用来比较每单位酶的催化能力。,酶的转换数(turnover number),(四)m值与max值的测定,1.双倒数作图法(double reciprocal plot),又称为 林-贝氏(Lineweaver-Burk)作图法,Y=aX+b,2.Hanes作图法,在林贝氏方程基础上,两边同乘S,S/V=1/Vmax S+Km/Vmax,Km/vm,Y=aX+b,