欢迎来到课桌文档! | 帮助中心 课桌文档-建筑工程资料库
课桌文档
全部分类
  • 党建之窗>
  • 感悟体会>
  • 百家争鸣>
  • 教育整顿>
  • 文笔提升>
  • 热门分类>
  • 计划总结>
  • 致辞演讲>
  • 在线阅读>
  • ImageVerifierCode 换一换
    首页 课桌文档 > 资源分类 > DOCX文档下载  

    2022净零热储能长时储能加速能源系统脱碳英文版.docx

    • 资源ID:675680       资源大小:1.44MB        全文页数:81页
    • 资源格式: DOCX        下载积分:5金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要5金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2022净零热储能长时储能加速能源系统脱碳英文版.docx

    McKinsey& CompanyLDESLONG DURATION ENERGY STORAGE COUNCILNet-zeroheat1.ongDurationEnergyStoragetoaccelerateenergysystemdecarbonizationPublishedinNovember2022bytheLDESCouncil.Copiesofthisdocumentareavailableuponrequestorcanbedownloadedfromourwebsite:.ThisreportwasauthoredbytheLDESCouncilincollaborationwithMcKinsey&Companyasknowledgepartner.Thisworkisindependent,reflectstheviewsoftheauthors,andhasnotbeencommissionedbyanybusiness,government,orotherinstitution.Theauthorsofthereportconfirmthat:1 .Therearenorecommendationsand/oranymeasuresand/ortrajectorieswithinthereportthatcouldbeinterpretedasstandardsorasanyotherformof(suggested)coordinationbetweentheparticipantsofthestudyreferredtowithinthereportthatwouldinfringeEUcompetitionlaw;and2 Itisnottheirintentionthatanysuchformofcoordinationwillbeadopted.Whilethecontentsofthereportanditsabstractimplicationsfortheindustrygenerallycanbediscussedoncetheyhavebeenprepared,individualstrategiesremainproprietary,confidential,andtheresponsibilityofeachparticipant.Participantsareremindedthat,aspartoftheinvariablepracticeoftheLDESCouncilandtheEUcompetitionlawobligationstowhichmembershipactivitiesaresubject,suchstrategicandconfidentialinformationmustnotbesharedorcoordinated-includingaspartofthisreport.ContentsPreface4Executivesummary8Acronyms131. TheroleofLDESinnet-zeroenergy142. TESasanenablertodecarbonizingheat183. LDEStechnologiescostandcompetitiveness244. TESbusinesscases345. Anintegratedenergysystemperspective486. UnlockingtheTESopportunity54Conclusion57Appendix A: Methodologyandassumptions58Appendix B: StateoftheTESindustry67Acknowledgements69PrefaceWemustcapturethenarrowwindowofopportunitytoachieveanet-zeroenergysystem.Thedecarbonizationoftheenergysectorneedstoacceleratetobecomealignedwithanet-zeropathwaythatlimitsglobalwarmingtobelow1.5oC.However,achievingnet-zeroemissionsby2050requiresmassivedevelopmentofrenewables,newandreinforcedinfrastructure,andtheadoptionofnewcleantechnologies.Manychallengescompoundinthistransition,assupplychainsneedtobescaledup,end-useequipmentneedstobeadapted,andinfrastructureneedstobedeployedandreinforced(forexample,transmissionanddistributionelectricitygridexpansionscantakeupto15yearstorealize).Immediateactionisrequiredtomeetemission-reductiontargets,limittheimpactofclimatechange,andmaximizetheopportunitiesahead.Asoutlinedinthe2021LDESNet-zeropowerreport,1long-durationenergystorage(LDES)offersalow-costflexibilitysolutiontoenableenergysystemdecarbonization.LDES, Whenever LDES is mentioned as a technology group, it is defined as a technology storing energy for ten or more hours, as per ARPA-E'sdefinition. When LDES is mentioned in analysis or modeling, the actual duration length is always specified, in line with NRELs recommendation.canbedeployedtostoreenergyforprolongedperiodsandcanbescaledupeconomicallytosustainenergyprovisionformultiplehours(tenormore),days(multidaystorage),months,andseasons.LDEScanstoreenergyinvariousforms,includingmechanical,thermal,electrochemical,orchemicalandcancontributesignificantlytothecost-efficientdecarbonizationoftheenergysystem.Furthermore,ithelpsaddressmajorenergytransitionchallengessuchassolarandwindenergysupplyvariability,gridinfrastructurebottlenecks,oremissionsfromheatgeneration.ThisreportpresentsthelatestviewontheroleofLDESinhelpingachieveNet-zeropowerandheatby2050, It is assumed that the power sector achieves net-zero emissions by 2040, and other sectors by 2050.focusingonthepotentialroleofthermalenergystorage(TES)inrealizingnet-zeroheat.ItbuildsonpriorLDESCouncilresearchandanalysisandpresentsupdatedcostperspectivesbasedondatafromLDESCouncilmembers.Asafollow-uptopreviousLDESCouncilpublications,thisreportfocusesontheheatsector,apivotalcomponentinachievingglobaldecarbonizationandclimatetargets.Accordingly,italsofocusesonaparticularsetofLDEStechnologies,TES,whichcanstoreheat,decarbonizeheatapplications,andintegraterenewablesinthissectorandthebroaderenergysystem.Thisreportalsohighlightshowanintegratedsystemapproachisimperativetocost-efficientlydecarbonizingenergysystems. The definition of energy system used in this report includes all components related to the production, nversion, and use of electrical energy, heat, and hydrogen. The electrification of the transport sector is included indirectly in the final electricity demand scenario from the McKinsey Global Energy Perspective.Electricity,heat,andhydrogenarebecomingincreasinglyinterconnected,drivenbythegrowinguptakeofrenewableenergyandaccesstotechnologiesthatintegratethem,suchasheatpumpsandLDES(Exhibit1).Thiscreatestheneedtolookattheintegratedecosystemratherthantheseparateenergysectorstojointlyinformcost-optimizedenergyinfrastructuredevelopments.Theanalysesinthisreporttakeinterdependenciesbetweenpower,heat,andhydrogenintoaccounttoassessthecost-optimizedmixofflexibilitysolutionsneededfortheheatandpowersectors.IthighlightstherelationshipbetweenpowerLDESandTEStoacceleratetheenergytransition,andtherolethatTEScanplayindecarbonizingheatapplications.Hydrogen-to-heatExhibit1Power,heat,andhydrogeninterconnectionsPowerPower-to-hydrogenHydrogen-to-powerAbouttheLDESCouncilTheLDESCouncilisaglobal,executive-ledorganizationthatstrivestoacceleratethedecarbonizationoftheenergysystematthelowestcosttosocietybydrivingtheinnovationanddeploymentofLDESanddecreasingemissions.TheLDESCouncilwaslaunchedattheConferenceofParties(COP)26andcurrentlycomprises64companies. Member count at the time of the release of this report in November 2022.Itprovidesfact-basedguidancetogovernmentsandindustry,drawingfromtheexperiencesofitsmembers,whichincludeleadingtechnologyproviders,industryandservicecustomers,capitalproviders,equipmentmanufacturers,andlow-carbonenergysystemintegratorsanddevelopers.Alltechnologyproviders,industryandservicescustomers,capitalproviders,equipmentmanufacturers,andlow-carbonenergysystemintegratorsanddevelopersaremembersoftheLDESCouncil.TechnologyprovidersiIMo三CXElectrifIed二ThermalSolutionsezncmAGRLDIEnefgiSeItlAmbriIlENERGYVAULTFormenergyALIARyeDevelopment电AZELlOZ=Xenercsvdo<vie-f8Xyn,Aucv'HEATRIIXTWRMALSaItXBreezel-.=-¼.7.ORGYsLIHighview11Power,MINESTORAGEStiesdal(BBENMlLLEENEKOYHydrostorPeniel,StorworksU臼IULJtDaENLIGHTE11INVINITYI-Ie11eR0Ysystems三=*J三2THERMOWA11ceres9eosIIKRAFTK_lBLOCK/QTORCyECHOGENpowersystemsESSKXOXOj.redflowOSTORAGEIndustryandservicescustomers<)COMPASSEGA产KUxd如&4Jum匕ILAVl5VAMOiUU.*WMIMIinGogle:MicrosoftRioTinto三llllll三SOUTH32CapitalprovidersBreakthrough¾cEnergyPARTNERSEquipmentmanufacturersBakerHUghe5»SIEMENSeGGYVOITH1.ow-carbonenergysystemintegratorsanddevelopers6CorreenergyEnBUJgroenkSumitomoSmFWrstedRelianceled>!rW4Ut0dTotaiEner9sExecutivesummaryDecarbonizingtheglobalenergysystemrequiresanintegratedapproachtoinformoptimalenergyinfrastructuredevelopmentsinatimelymanner.Italsorequiressystemicchangesaswemovetowardenergysystemspredominantlysuppliedbyvariablerenewableenergy.Torealizea1.5scenarioby2050,projectionsestimateafivefoldincreaseintotalrenewablessupplyandatwofoldincreaseintotalelectricitydemandbythatyear. "Net zero by 2050, a roadmap for the global energy sector," IEA, 2021.Furthermore,thereareearlysignsthatpower,heat,andhydrogenarebecomingincreasinglyinterconnectedthroughsector-uplingtechnologieslikeheatpumps,electrolyzers,orhydrogenboilers.This,inadditiontothegrowingshareofrenewablesandelectrification,furtherincreasestheenergysystem'scomplexity.Therefore,anintegratedapproachcouldhelpensureacost-optimizedandtimelyenergytransition.1.DESoffersacleanflexibilitysolutiontosecurepowerandheatreliability.LDESencompassesarangeoftechnologiesthatcanstoreelectricalenergyinvariousformsforprolongedperiodsatacompetitivecostandatscale.Thesetechnologiescanthendischargeelectricalenergywhenneeded-overhours,days,orseasons-inordertofulfilllong-durationsystemflexibilityneedstoshifttheincreasingvariable,renewableenergysupplytomatchdemand.Thisreportbuildsonthe2021LDESCouncilNet-zeropowerreportbyfocusingontheroleofLDESinrealizingnet-zeropowerandheatwhileexpandingontherolethermalenergystorage(TES)canplayindecarbonizingheatapplications.TESprovidesanLDESsolutiontoelectrifyingandfirmingheat.Decarbonizingtheheatsectoriscrucialforrealizinganet-zeroenergysystemby2050,giventhatitrepresentsroughly45percentofallenergy-relatedemissionstoday. The baseline includes emissions from heating, industrial processes, transport, and other energy sector emissions. It excludes power generation emissions.TEScandecarbonizeheatapplicationsbyelectrifyingandfirmingheatwithvariablerenewableenergysources.Inaddition,itcanoptimizeheatconsumptioninindustrialprocessesandfacilitatethereuseofwasteheatortheintegrationofcleanheatsources(forexample,fromthermalsolar).TEScanenablethecost-efficientelectrificationofmostheatapplications.TEScoversavarietyoftechnologiesthatcanaddressawiderangeofstoragedurations(fromintradaytoseasonal)andtemperatures(fromsubzeroto2,400oC).Accordingtothe2022LDESbenchmarkresults,TESenablescost-efficientelectrificationanddecarbonizationofthemostwidelyusedheatapplications,namelysteamandhotair.Thebenchmarkresultsalsoindicatethatfirmingheatisverycost-efficientwhenthefinaldemandisheat.SomeTEStechnologiesarealreadycommerciallyavailablewithvariouseasy-to-customizeuses.Todate,themostcommonlydeployedTEStechnologiesincludemedium-pressuresteam,withvariousapplications,includinginthechemicalsorfoodandbeverageindustries.Additionally,developingtechnologieswillexpandtheTESsolutionspacewithinnovativeconceptsandaddresstemperatureneedswellabove1,000oC.TESbusinesscasesdemonstrateprofitabilityataninternalrateofreturn(IRR)of16to28percent,subjecttolocalmarketconditions.Theseincludeoptimalphysicalconfigurations(accesstocaptiverenewables,captiveheat,orgridelectricity)andmarketdesigns(includinglowgridfeesandtheremunerationofflexibility).ThebusinesscaseassessmentscoverawiderangeofrealisticTESusecases,namely:medium-pressuresteaminachemicalsplant(upto28percentIRR),districtheatingsuppliedbyapeakerplant(upto16percentIRR),high-pressuresteaminanaluminarefinery(upto16percentIRR),andco-generationinanoff-gridgreenhouse(upto22percentIRR).Allmarket-exposedbusinesscasesindicateasupportiveecosystemthatacknowledgesthevalueofflexibility,suchasancillaryservices,wouldlikelybecriticaltoensuringwidecommercialadoption.Thebusinesscasewithbehind-the-meterrenewablegenerationshowsthatTEScanalreadybecommerciallyfeasibleregardlessofexternalmarketconditions.1.DEStechnologiesareexpectedtobecomeincreasinglycost-competitiveasthemarketmatures.Theupdated2022powerLDEScostbenchmarksolidifiestheforecastthatLDEScostswilldeclineinthefollowingyears,suggestinga25to50percentoverallcapitalexpenditure(capex)reductionofpowerLDEStechnologiesby2040.Inaddition,the2022TEScostbenchmarkindicatesthatTEScapexisalsoexpectedtodeclineby2040,withanestimateddropofbetween5and30percentforpowercapexand15and70percentforenergystoragecapex.AcasestudyontheportofRotterdamexemplifiestherelevanceofLDESfordecarbonizingenergyhubswhilecreatingsystemvalue.Thecasestudyrepresentsatypicalindustrialhubwithsignificantpowerandheatdemandon-site,whereacombinationofTESandpowerLDEScanplayaroleindecarbonizingthesystem.InanindustriallocationliketheportofRotterdam,theneedforindustrialheatingcanfundamentallychangetheconfigurationforanet-zeroenergysystem.TEScanfirmthevariableoffshorewindsupplyintoamorestablesupplyofcleanheatforindustrialheating,includinghigh-temperatureheating.TEScoulddoubletheglobalLDEScapacitypotentialinacost-optimizednet-zeroenergypathwayinlinewitha1.5oCscenario.Basedonintegratedsystemmodeling,TEScanexpandtheoverallinstalledcapacitypotentialofLDEStobetween2and8TWby2040(versus1to3TWwithoutTES),whichtranslatestoacumulativeinvestmentofUSD1.6trilliontoUSD2.5trillion.TESenablesthisadditionalLDESopportunitybyprovidingacost-efficientalternativetodecarbonizingheatandhigh-tem-peratreheatingapplications.ThisisestimatedtoreducesystemcostsbyuptoUSD540billionperyearwhilecreatingbroadersystemvaluebyenablinganacceleratedrenewablesbuild-outandoptimizationofgridutilization.CriticalsupportelementscouldhelpdrivemoreTESadoption.AsupportiveecosystemthatrewardsflexibilityandpromotesatechnologicallylevelplayingfieldforflexibilitysolutionslikeLDESiscriticaltoacceleratingthescale-upofTES.Additionally,increasingawarenessandprovidingsupporttoderiskinitialinvestmentsispivotal.Businessleaders,policymakers,andinvestorshaveanimportantroletoplayinunlockingtheTESpotentialbyreducinglong-termuncertaintyandtherebyshapingthecost-optimizedpathwaytowardthenet-zeroenergysystemofthefuture.Net-zeroheat1.ongDurationEnergyStoragetoaccelerateenergysystemdecarbonizationThe transition to net zero requires an integrated energy system perspectiveRealizing a cost-optimized transition to net zero across all energy sectors requires significant deployment of renewables, increased interconnections between power, heat, and hydrogen, and supporting infrastructure. System flexibility will be critical to securing energy system reliabilityHeatdecarbonizationiscriticalfornetzero,asitaccountsfor-45%ofenergy-relatedemissionsGlobal final energy consumption by sectorShare of global energy-related CO2e emissions1Machinery, appliances, lightingIndustryTransportationBuildings: heatingDistrict heating Buildings: cookingHeatingandcooling20%from industrial heat10%from buildings heatLongdurationenergystorageenablesacost-optimizedpathwaytowardnetzeroAcost-optimizednet-zeropathwaycouldby2040resultin.2-8 TWdeployed LDEScapacityUSD 1.7-3,6 trcumulative LDES capexinvestmentsOU.O-.uptoUSD540bnsystemsavingsperyearThermalenergystorage(TES).prisesawiderangeoftechnologies2,400oC<0(Q)Storage duration use caseSome TES technologies arealready commercially availableStorage temperatureR&D Pilots Commercially availableTechnical maturityTESenableselectrificationofheatapplicationswithdifferenttemperatureanddurationneeds. is a cost-efficient 24/7 heat decarbonization solutionTechnologyLevelized cost of heat (steam) for selected technologies1 USD/MWhbatterybatteryTESmakesstoringheatmorecost-efficientthanstoringpowerforheatapplications.canpresentattractivebusinesscasessubjecttolocalconditions.IRRsforselectedusecasesUpsidecase28%16%16%22%Basecase6%0%ChemicalsOff-gridDistrictheatingAluminaplantgreenhousepeakerplantrefineryTESbehind-the-meterbusinesscasescanbepositiveastherearenogridconnectionfees.

    注意事项

    本文(2022净零热储能长时储能加速能源系统脱碳英文版.docx)为本站会员(夺命阿水)主动上传,课桌文档仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知课桌文档(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-1

    经营许可证:宁B2-20210002

    宁公网安备 64010402000986号

    课桌文档
    收起
    展开