欢迎来到课桌文档! | 帮助中心 课桌文档-建筑工程资料库
课桌文档
全部分类
  • 党建之窗>
  • 感悟体会>
  • 百家争鸣>
  • 教育整顿>
  • 文笔提升>
  • 热门分类>
  • 计划总结>
  • 致辞演讲>
  • 在线阅读>
  • ImageVerifierCode 换一换
    首页 课桌文档 > 资源分类 > DOC文档下载  

    基于某Matlab的图像去噪算法仿真.doc

    • 资源ID:7008       资源大小:597.50KB        全文页数:10页
    • 资源格式: DOC        下载积分:10金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要10金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    基于某Matlab的图像去噪算法仿真.doc

    word基于Matlab的图像去噪算法仿真在信息化的社会里,图像在信息传播中所起的作用越来越大。所以,消除在图像采集和传输过程中而产生的噪声,保证图像受污染度最小,成了数字图像处理领域里的重要局部。本文主要研究分析邻域平均法、中值滤波法、维纳滤波法与模糊小波变换法的图像去噪算法。首先介绍图像处理应用时的常用函数与其用法;其次详细阐述了四种去噪算法原理与特点;最后运用Matlab软件对一含噪图片含高斯噪声或椒盐噪声进展仿真去噪,通过分析仿真结果得出:一均值滤波是典型的线性滤波,对高斯噪声抑制是比拟好的;二中值滤波是常用的非线性滤波方法,对椒盐噪声特别有效;三维纳滤波对高斯噪声有明显的抑制作用;四对小波系数进展阈值处理可以在小波变换域中去除低幅值的噪声和不期望的信号。 本论文主要是从两方面展开,首先是图像去噪算法:简要说明了图像噪声的概念与分类,详细阐述了邻域平均法、中值滤波法、维纳滤波法与模糊小波变换法的去噪原理与特点。 其次是基于Matlab的图像去噪算法仿真:根据邻域平均法、中值滤波法、维纳滤波法与模糊小波变换法原理分析,运用Matlab仿真软件编写代码,对一含噪图片含高斯噪声或椒盐噪声进展仿真去噪,并对结果分析讨论,比拟几种方法的优缺点。本论文仿真时选取一彩色图片“,并在图片中参加两种噪声:高斯噪声和椒盐噪声。所谓高斯噪声是指它的概率密度函数服从高斯分布的一类噪声。椒盐噪声是由图像传感器、传输信道、解码处理等产生的黑白相间的亮暗点噪声,属于非平稳噪声。本章利用Matlab软件对含噪图像的去噪算法进展仿真,将应用邻域平均法、中值滤波法、维纳滤波法和模糊小波变换法对含有高斯噪声和椒盐噪声图像的去噪效果进展比拟,从而得到相应结论。1.1 邻域平均法的仿真 本节选用邻域平均法对含有高斯噪声和椒盐噪声的图片进展去噪,并用Matlab软件仿真。1给图像参加均值为0,方差为0.02的高斯噪声,选择3×3模板去噪Matlab局部代码:j=imnoise(x,'gaussian',0,0.02);h=ones(3,3); h=h/9;k=conv2(j,h); 仿真结果如图4-1所示。图1-1 邻域平均法对高斯噪声去噪的仿真结果2给图像参加噪声密度为0.02的椒盐噪声,选择3×3模板去噪Matlab局部代码:j=imnoise(x,'salt & pepper',0.02);h=ones(3 3);h=h/9;k=conv2(j,h);仿真结果如图1-2所示。图1-2 邻域平均法对椒盐噪声去噪的仿真结果从仿真结果可以看出:邻域平均法实现起来很方便,适用于消除图像中的颗粒噪声,但需要指出这种方法既平滑了图像信号,同时使图像的细节局部变得模糊。由以上处理后的图像可以看到:邻域平均法消弱了图像的边缘,使图像变得有些模糊。如图1-1所示,均值滤波对高斯噪声的抑制是比拟好的,但对椒盐噪声的抑制作用不好,如图1-2所示,椒盐噪声仍然存在,只不过被削弱了而已。为了改善均值滤波细节比照度不好、区域边界模糊的缺陷,常用门限法来抑制椒盐噪声和保护细小纹理,用加权法来改善图像的边界模糊,用选择平均的自适应技术来保持图像的边界。1.2 中值滤波的仿真本节选用中值滤波法对含有高斯噪声和椒盐噪声的图像进展去噪,并用Matlab软件仿真。1给图像参加均值为0,方差为0.02的高斯噪声,分别选择3×3模板、5×5模板和7×7模板进展去噪Matlab局部代码:j=imnoise(I,'gaussian',0,0.02);x=j(:,:,1);subplot(221);imshow(x);title('高斯噪声图片');k1=medfilt2(x,3 3);k2=medfilt2(x,5 5);k3=medfilt2(x,7 7);仿真结果如图1-3所示。图1-3 中值滤波法对高斯噪声去噪的仿真结果2给图像参加噪声密度为0.02的椒盐噪声,分别选择3×3模板、5×5模板和7×7模板进展去噪Matlab局部代码:i=imread('2010-03-09-2.bmp');j=imnoise(I,'salt & pepper',0.02);x=j(:,:,1);subplot(221);imshow(x);title('椒盐噪声图片');k1=medfilt2(x,3 3);k2=medfilt2(x,5 5);k3=medfilt2(x,7 7);仿真结果如图1-4所示。图1-4 中值滤波法对椒盐噪声去噪的仿真结果从仿真结果可以看出:对图像参加椒盐噪声后,应用中值滤波,如图1-4所示,噪声的斑点几乎全部被滤去,它对滤除图像的椒盐噪声非常有效。而对于高斯噪声来说,如图1-3所示,虽然也有一些去噪效果,但效果不佳。由此可知,中值滤波法运算简单,易于实现,而且能较好地保护边界,但有时会失掉图像中的细线和小块区域。并且采用窗口的大小对滤波效果影响很大,窗口越大,图像去噪效果越好,但代价是模糊的程度越大。1.3 维纳滤波的仿真选用维纳滤波法对含有高斯噪声和椒盐噪声的图像进展去噪,并用Matlab软件仿真。1给图像参加均值为0,方差为0.02的高斯噪声,选择3×3模板去噪Matlab局部代码:i=imread('2010-03-09-2.bmp');j=imnoise(I,'gaussian',0,0.02);x=j(:,:,1);k=wiener2(x);仿真结果如图1-5所示。图1-5 维纳滤波法对高斯噪声去噪的仿真结果2给图像参加噪声密度为0.02的椒盐噪声,选择3×3模板去噪Matlab局部代码:j=imnoise(I,'salt & pepper',0.02);x=j(:,:,1);k=wiener2(x);仿真结果如图1-6所示。图1-6 维纳滤波法对椒盐噪声去噪的仿真结果从仿真结果可以看出:维纳滤波对高斯白噪声的图像滤波与邻域平均法比拟,滤波效果好,它比线性滤波器具有更好的选择性,可以更好地保存图像的边缘和高频细节信息。虽然,维纳滤波在大多数情况下都可以获得满意的结果,尤其对含有高斯噪声的图像。另外维纳滤波对于椒盐噪声去除效果却不尽人意,几乎没有效果。它不能用于噪声为非平稳的随机过程的情况,对于向量情况应用不方便。因此,维纳滤波在实际问题中应用不多。 1.4 基于模糊小波变换法的仿真选用模糊小波变换法对含有高斯噪声和椒盐噪声的图像进展去噪,并用Matlab软件仿真。1给图像参加均值为0,方差为0.02的高斯噪声,用小波函数coif2对图象进展2层分解,选择3×3模板去噪Matlab局部代码:function y=zishiying(x)x11=medfilt2(x,3 3); x12=double(x11);a,b=size(x12);c,s=wavedec2(x12,3,'coif2'); n=1,2,3; p4=0.02*(sqrt(2*log(a*b); size(detcoef2('h',c,s,1); size(detcoef2('v',c,s,1);size(detcoef2('d',c,s,1);p1(1)=detcoef2('h',c,s,1);p2(1)=detcoef2('v',c,s,1);p3(1)=detcoef2('d',c,s,1);p1(2)=detcoef2('h',c,s,2); p2(2)=detcoef2('v',c,s,2);p3(2)=detcoef2('d',c,s,2);for i=1:1:2 p1(i)=1/(p1(i)-p4)2+1); if p1(i)>=p4 p1(i)=sign(p1(i)*(abs(p1(i)-p1(i)*p4);elsep1(i)=0;endif p2(i)>=p4 p2(i)=sign(p2(i)*(abs(p2(i)-p2(i)*p4);elsep2(i)=0;endif p3(i)>=p4p3(i)=sign(p3(i)*(abs(p3(i)-p3(i)*p4);elsep3(i)=0;endend 仿真结果如图1-7所示。图1-7 模糊小波变换法对高斯噪声去噪的仿真结果2给图像参加噪声密度为0.02的椒盐噪声,选择3×3模板去噪仿真结果如图4-8所示。图1-8 模糊小波变换法对椒盐噪声去噪的仿真结果从仿真结果可以看出:为验证本文算法的滤波效果,对参加不同噪声的图像进展了滤波测试。从视觉来看,自适应模糊小波变换算法在保持细节和去噪两方面效果最好。在平滑高斯噪声和有脉冲噪声的图像去噪效果都很显著。本算法相对于其它几种算法其效果都有明显的改良,既能够很好地消除噪声,又能够较好地保持图像边缘细节,而且算法简单,易于实现。目前使用比拟广泛。1.5 几种去噪方法的比拟分析均值滤波是典型的线性滤波算法,其采用的主要方法为邻域平均法。即对待处理的当前像索点,选择一个模板,该模板由其近邻M个像素组成,求模板中所有像素的均值,再把该均值赋予当前像素的算术平均值,作为邻域平均处理后的灰度。该方法运算简单,对高斯噪声具有良好的去噪能力。均值滤波可归结为矩形窗加权的有限冲激响应线性滤波器。因此,均值滤波相当于低通滤波器。这种低通性能在平滑噪声的同时,必定也会模糊信号的细节和边缘,即在消除噪声的同时也会对图像的高频细节成分造成破坏和损失,使图像模糊,由以上处理后的图像可以看到:邻域平均法消弱了图像的边缘,使图像变得有些模糊。均值滤波时高斯噪声抑制是比拟好的,但对椒盐噪声的抑制作用不好,椒盐噪声仍然存在,只不过被削弱了而已,如仿真结果图1-2所示。为了改善均值滤波细节比照度不好、区域边界模糊的缺陷,常用门限法来抑制椒盐噪声和保护细小纹理,用加权法来改善图像的边界模糊,用选择平均的自适应技术来保持图像的边界。中值滤波是常用的非线性滤波方法,也是图像处理技术中最常用的预处理技术。它可以克制线性滤波器给图像带来的模糊,在有效去除颗粒噪声的同时,又能保持良好的边缘特性,从而获得较满意的滤波效果,特别适合于去除图像的椒盐噪声,如仿真结果图1-4所示。当窗口在图像中上下左右进展移动后,利用中值滤波算法可以很好地对图像进展平滑处理。由以上图像可以看到:中值滤波法较好地保存了图像的边缘,使其轮廓比拟清晰。中值滤波对椒盐噪声特别有效,取得了很好的效果,而对高斯噪声效果不佳。对一些复杂的图像,可以使用复合型中值滤波,如:中值滤波线性组合、高阶中值滤波组合、加权中值滤波以与迭代中值滤波等来改善单纯中值滤波的一些不足,从而达到更好的滤波效果。维纳滤波是一种对退化图像进展恢复处理的一种常用算法,也是最早也最为人们熟知的线性图像复原方法。其设计思想是使输人信号乘响应后的输出,与期望输出的均方误差为最小。从图1-5中可以看到维纳滤波对高斯噪声有明显的抑制作用,相对与均值滤波和中值滤波,维纳滤波对这两种噪声的抑制效果更好,缺点就是容易失去图像的边缘信息。又正如图1-6所示,维纳滤波对椒盐噪声几乎没有抑制作用。小波阈值去噪方法是研究最广泛的方法。这种非线性滤波方法之所以特别有效, 就是由于小波变换具有一种“集中的能力, 它可以使一个信号的能量在小波变换域集中在少数系数上, 因此这些系数的幅值必然大于在小波变换域能量分散于大量小波系数上的信号或噪声的幅值。这就意味着对小波系数进展阈值处理可以在小波变换域中去除低幅值的噪声和不期望的信号, 然后运用小波逆变换, 得到去噪后的重建图像。如图1-7、1-8所示,使用小波变换都得到了较好的消噪效果。上述滤波方法虽都有一定的降噪效果,但都有其局限性。事实上,不管滤波器具有什么样的频率响应,均不可能做到噪声完全滤掉,使信号波形不失真。但我们可以不断地改良滤波的技术,如实际应用中常用一些改良型的滤波方法如小波导向、多级门限检测来提高去噪的效果从而最大可能地恢复出原始图像。参考文献:1 CAITT,SILVERMANBWIncorporating information on Neighbouring Coefficients into wavelet estimation JThe Indian Journal of Statistics,2001,63(2):127-1482 群生,敏等基于模糊技术的随机噪声消除算法J华南理工大学学报,2000,28(8):82-873 L.K.Shark and C.Yu.Denoising by optimal fuzzy thresholding in wavelet domain JIEEE Electronics letters,2000,36(6):581-5824 S.Mallat,Sifen Zhong,Characterization of signals from multiscale edgesJIEEE Trans on PAMI,1992,PAMI-14(7):710-7325 Keesok J.Han and Ahmed H.Tewfik.Hybnd Wavelet Transform Fllter for Image RecoveryJIEEETransImage Processing,1998,l540-5446 H.K .Kwan .Fuzzy filters for noise image filtering JIEEE2003,161-1647 晋生,蔡靖等.一种具有鲁棒性的基于小波变换的滤波方法J.电子与信息学报,2002,243:413-4178 磊,潘泉,洪才等.小波域滤波阈值参数的选取J.电子学报,2001,293:400-40210 / 10

    注意事项

    本文(基于某Matlab的图像去噪算法仿真.doc)为本站会员(夺命阿水)主动上传,课桌文档仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知课桌文档(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-1

    经营许可证:宁B2-20210002

    宁公网安备 64010402000986号

    课桌文档
    收起
    展开