欢迎来到课桌文档! | 帮助中心 课桌文档-建筑工程资料库
课桌文档
全部分类
  • 党建之窗>
  • 感悟体会>
  • 百家争鸣>
  • 教育整顿>
  • 文笔提升>
  • 热门分类>
  • 计划总结>
  • 致辞演讲>
  • 在线阅读>
  • ImageVerifierCode 换一换
    首页 课桌文档 > 资源分类 > DOCX文档下载  

    Temperature-adaptive hydrogel optical waveguide with soft tissue-affinity for thermal regulated interventional photomedicine.docx

    • 资源ID:705940       资源大小:419.90KB        全文页数:11页
    • 资源格式: DOCX        下载积分:5金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要5金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    Temperature-adaptive hydrogel optical waveguide with soft tissue-affinity for thermal regulated interventional photomedicine.docx

    naturecommunicationsArticlehttps:doi.org/10.1038/s41467-022-35440-wTemperature-adaptivehydrogelopticalwaveguidewithsofttissue-affinityforthermalregulatedinterventionalphotomedicineReceived: 21 January 2022Accepted: 2 December 2022Published online: 16 December 2022Check for updatesGuoyinCheni,KaiHouOState Key Laboratory for Modifi cation of Chemical Fibers and Polymer Materials, College of Materials Science and Engineerinq, Donghua University, 2999 North Renmin Road, Shanghai 201620, China. iDepartment of Chemistry, Stony Brook University, Stony Brook, NewYork, NY 11794r USA.e-mail: houkai711; rancao; zmf,NuoYui,PeilingWeii,TaoChem,CaihongZhangi,ShunWang,HongmeiLiu,RanCao1,LipingZhuBenjaminS.HsiaoS&MeifangZhuO1Photomedicinehasgainedgreatattentionduetoitsnontoxicity,goodselectivityandsmalltrauma.However,owingtothelimitedpenetrationoflightanddifficultmonitoringofthephoto-mediatherapies,itischallengingtoapplyphotomedicaltreatmentindeeptissueastheymaydamagenormaltissues.Herein,athermalregulatedinterventionalphotomedidnebasedonatemperature-adaptivehydrogelIiber-basedopticalwaveguide(THFOW)isproposed,capableofeliminatingdeeplyseatedtumorcellswhileloweringrisksofovertemperature(causesthedeathofhealthycellsaroundthetumor).TheTHFOWisfabricatedbyanintegratedhomogeneous-dynamiccrosslinking-spinningmethod,andshowsaremarkablesofttissue-affinity(lowcytotoxicity,swellingstability,andsofttissue-likeYoung,smodulus).Moreover,theTHFOWshowsanexcellentlightpropagationpropertywithdifferentwavenumbers(especially-0.32dBcm-with915nmlaserlight),andtemperature-gatedlightpropagationeffect.TheTHFOWandrelevanttherapeuticstrategyofferapromisingapplicationforintelligentphotomedicineindeepissue.Inrecentyears,asanemergingtechnology,photomedicinehasbeenusedfortreatingcancerousdiseaseswithadvantagesofsmalltrauma,nontoxicity,andgoodselectivity!Thetreatmentisprincipallybasedonthelight-inducedphysicalreactions(generationofheat,suchasphotothermaltherapy)-chemicalreaction(photochemicalreaction)?.,orbiologicalprocesses(optogenetic,PhOtObioIogiCaI)Gontothediseaselocationbyinducingexogenousphotosensitivereagent如.However,asthelightpenetratesonlyafewcentimetersthroughthetissue,itisdifficulttoapplyphotomedicaltreatmentindeeptissue®u.Interventionaltherapyisoneofthemosteffectiveclinicaltreatmentstoreplacethedeeplyinvasivesurgicaloperations,whichreliesmainlyonanintervenedmedium(metalwire,silicaopticalfiber,etc.)toimportapparatusintothedeeplyseateddiseaselocation.Andinvitroequipment(suchlikecomputedtomographyangiography,ultrasound,magneticresonance,andetc.)iscombinedtorealizediagnosisandtreatmenti4,s.Inconsequence,inthewaythatlightguidesusedforinterventionaltherapy,photomedicinecouldeffectivelysolvetheproblemoflightpenetrationthroughtissue.Althoughlight-guidessuchassilica-andpolymer-basedopticalfibershavebeenproventobefeasible,theirstiffnessandpoorbiocompatibilitymaycauseinflammationordamagetohosttissue12j6.Besides,duringphotomedicaltreatment,thephoto-inducedeffectsshouldbecontrolledinamannertoavoidthedamageofnormaltissuearoundthediseaseslocationTothisend,combiningequipmentassistedimagingtechniquewithinterventionalphotomedicaltreatmenttomonitorandguidethetherapeuticprocessisanefficientwayiu.However,thiskindoftreatmentishigh-cost,time-consumingandcomplicated.Hence,anef-fidentmethodfordynamicandpreciseinsituphysiologicalmicroenvironmentalmonitoring(temperature,pH,etc.)isdesiredforguidingthephotomedicaltherapeuticprocessinacontrolledmannerunderthedeeptissue.Hydrogel-basedopticalWaveguideareidealcandidatesforusingasintervenedlight-guidesforaccurateandtargetedlightpropagationa.i9.Asamatrix,hydrogelscanbeextensivelymodifiedbymoleculardesignandrealizeenvironmentalresponses,suchastemperature,pH,andmolecularresponse”.;Inthisregard,fabricatinghydrogelopticalwaveguidewithacertaincondensedstructureandadjustableopticalproperties,couldrealizelightguidingandphysiologicalmicroenvironmentalmonitoringsimultaneously.Forexample,basedonthe"coiltoglobulewinducedtransparency-opacitytransitionatthelowercriticalsolutiontemperature(LCST)1thermosensitivehydrogelscouldbeusedastemperature-dependentopticalswitches”.However,monomerswerenotpreferredforfiberformingduetoinsufficientinteraction.Furthermore,inevitablephaseseparationduringexothermicfreeradicalpolymerizationwouldinduceagglomerationofmolecularchainsorcross-linkedmicroregions,whicharedisadvantageousforfunctionalhydrogelfiberformation,thusitisdifficulttoobtainahydrogelfiberwithauniformstructure.Inthiswork,adesiredtemperature-adaptivehydrogelfiber-basedopticalwaveguide(THFOW)isfabricatedbyanintegratedhomogeneous-dynamic-crosslinking-spinningonlarge-scale.ThefabricatedTHFOWshowsanexcellentlightpropagationpropertywithdifferentwavenumbers(especially-0.32dBCm-oflightattenuationwith915nmlaserlight)andhighlysensitivetemperature-gatedlightpropagationeffect.Inaddition,athermalregulatedinterventionalphotomedicinebasedontheTHFOWisdemonstrated,capableofeliminatingdeeplyseatedtumorcellswhileloweringtherisksofovertemperature.Inconsequence,thefabricatedTHFOWshowsagreatpotentialforapplicationinthefieldofintelligentphotomedicine.ResultsanddiscussionConceptofthermalregulatedinterventionalphotomedicineAconceptofthermalregulatedinten/entionalphotomedicine(Fig.1)isproposedhere,whichiscapableofefficientlyeliminatingthetumorcellswhileloweringtherisksoftheovertemperaturethatcausesthedeathofnormalcellsaroundthetumorsite.Firstwithremarkablesofttissue-affinity,thefabricatedTHFOWcanbeimplantedintodeeptissuesofhumanbodyandtargetthetumorsitewithoutinflanimation.TheuniformgelstructureandhightransparenceenabletheTHFOWefficientlytransport915nmlaserlightfromexternallaserequipmenttothediseasesiteinvivo.Consequently,photothermalheatingaroundthetumorisinducedaspre-injectedphotothermalnanoparticlesFig.1Aconceptofthermalregulatedinterventionalphotomedicine.Schematicillustrationofthethermalregulatedinterventionalphotomedicine(LCSTmeansthelowercriticalsolutiontemperature)indeeptissuebyusingthetemperature-adaptivehydrogeliberbasedopticalwaveguide(THFOW).exposingto915nmNIRlaser.WhenthetemperatureofthetumorsiteapproachesLCSToftheTHFOW,phaseseparationwouldoccurbetweenthepolymernetworkandH2Owithinthecorehydrogelfiber,causingareducedtransparencyofTHFOW(Fig.1top-rightpart),andthe915nmNIRlaserwouldscatterthesurroundingtissue.Hence,thetemperatureofthetumorsitecanberegulatedaroundthelowercriticalsolutiontemperature(LCST)oftheTHFOW.Atthistemperature,thecancercellswillbeefficientlykilled,whileavoidingseriousdamagetothesurroundingnormaltissuecausedbyovertemperature.Thus,thefabricatedTHFOWshowedgreatapplicationpotentialinthefieldofintelligentphotomedicine.ContinuoussynthesisandstructuralcharacterizationoftheTHFOWThekeyofthethermalregulatedinterventionalphotomedicineindeeptissueisfabricatinganopticalhydrogelfiberwithlowlightattenuationandtunablethermosensitivity.Here,WechoseN-isopropylacrylamide(NIPAM)asthefunctionalmonomer,andN,N-dimethylacrylamide(DMAAm)asthehydrophiliccomponenttotunetheLCSTofthefabricatedhydrogel.Toobtainalowlightguidingattenuation,theopticaltransparencyoftherawmaterialsisanimportantparameter,andthecoreshouldhavehigherrefractiveindexthantheSIieathNg.AlltheNIPAM/DMAAm(ND)hydrogelsintuitivelyshowedahightransparencyfromthephotographsofthe(NxD100-)50hydrogels(SupplementaryFig.1a)landSupplementaryFig.1bshowsthetransmittanceandphotographsofthe(NXDlOo-X)50hydrogels.Allthehydrogelsshowedahightransmittance(>90%)inthe460-920nmrange,indicatinghightransparency,andthusguaranteedlowlightattenuatio116,a.Inaddition,theLCSTofthedifferent(NXDloO-X)50hydrogelswasinvestigatedtoselectasuitablemonomercompositionforthepre-gelsolution(SupplementaryFig.2);whenthetemperaturewashigherthantheLCSTfphase-separation-causedopacitywasobservedin(N×Doo-×)sohydrogels(SupplementaryFig,2c),whichshowedasensitivetemperature-controlledswitchforlighttransmittance.Furthermore,itcanbeseenthatwiththeincreaseinDMAAm,theLCSTofthefabricatedhydrogelincreased,andcoincidedwiththeformulaofLCST=31.37+0.58XCd,whereCdistheconcentrationofDMAAmintotalmonomers,causedbyincreaseinDMAAm(hydrophilicity)content.Asthehydrophiliccomponentinthepolymernetworkincreased,itrequiresahighertemperaturetotriggerthephase-separatio2i.22.Consideringthesuitabilityoftransmittanceandthermosensitivity,and48wasthetemperaturethatcouldefficientlyeliminatethecancercells,thuswechose(N70D30)50(LCST=48.6)astheprecursorcompositiontofabricatethedesiredTHFOW.THFOWwasfabricatedusinganintegratedhomogeneous-dynamic-crosslinking-spinningmethod.AsillustratedinFig.2a,2wt%Na-alginatesolutionand(N70D30)50solutionwereusedassheathandcorespinningsolution,respectively.Theformingprocessesmainlyconsistoftwostages:duringthefirststage,theNa-alginatesolutiongelledimmediatelyintotheCa-alginatesheathhydrogelfiberwhenitwasinjectedintoaCaChcoagulatingbath(10C,asillustratedinthebottom-rightpartofFig.2a)?c”.Duringthesecondstage,thesheathhydrogeltubebringsthecoremonomersolutionintotheUVlightregion,whichtriggersradicalpolymerizationofdoublebondsamongthemonomers(NIPAm,DMAAm1andPEGDA),formingthecorehydrogelpolymernetworks(asillustratedinthetop-leftpartofFig.2a).However,owingtotheheatreleasedfromthepolymerization,thetemperaturewouldincreasesharplyovertheLCSTofthepre-gelledNIPAM-basedhydrogelwithouttimelyheatdissipation,causingphaseseparationwithinthethermosensitivepre-gelledcoremonomersolution.Thus,polymerizationoccursintwodifferentphases,leadingtoinhomogeneouspolymernetworks.Toaddressthisproblem,thecoagulatingbathwascooledusingiceduringthespinningprocess(<10oC),whichcouldpromotethedissipationofthereleasedheat(Fig.2b),thusavoidingphaseseparationduringthepolymerizationFig. 2 Fabrication and characterization of the THFOW. Schematic illustration ofTHFOW; Photos of (d) a bobbin of the fabricated THFOW and (e) Cross-sectionaland side view of the THFOW in deionized water, scale bar = 1000 n (f) Light transmission within the THFOW.(a) the fabricating process of the THFOW and (b) heat emission from the core monomer precursor; (C) Photos of the (N7oD3o)so hydrogel and the fabricatedprocess.ThisguaranteesuniformityofthepolymernetworkwithintheTHFOW.Asacomparison,the(N70D30)50hydrogelsynthesizedbydirectUVpolymerization(withoutcoolingprocess)showedafoggyopacity(Fig.2c,left),whilethatwithcoolingprocess,thefabricated2417 m/2533 m, 1395 m/1490 m, 1097 m/1223 m, and 633 coupling with laser light of a larger wavelength would have lowerTHFOWshowedhighlytransparency(Fig.2c,right).Aftercollectingonarollerandgoingthroughanaftertreatmenttoremovetheresidualmonomersandimpurities,THFOWwasfinallyobtained(Fig.2d).Moreover,THFOWwithdifferentdiameterscanbefabricatedbyvaryingthespinningneedlewithdifferentdiameters(SupplementaryFig.3)fromthismethod(Fig.2e,SupplementaryFig.4),anddiametersofm/781m(corediameter/sheathdiameter)couldberealized,andnamedasTHFoW25。,THFoWI5oo,THFOWI200,THFoW8ooasshowninFig.2e.TheseTHFOWswithdifferentdiametersaresuitableforvariousapplicationscenarios.It'sworthnotingthatthethicknessofthesheathlayerisintherangeof50-60mforallthesamples,whichismuchsmallerthanthecorrespondingsheaththicknessofthespinningneedles(SupplementaryFig.3).Thiswasbecausethesheathlayerhydrogeltendstoshrinkforrigidlylimitingtheswellingofthecorehydrogel(discussedindetailbelow).EvaluationoflightpropagationpropertiesThisTHFOWshowedapparentlyexcellentlightpropagationproperties(Fig.2f),whichisduetoitsdearanduniformcore-sheathstructure(SupplementaryFigs.5,6),andalsobecausetherefractiveindex(RI)ofthecorehydrogelwashigherthanthatofthesheathhydrogel(SupplementaryFig.7).Consequently,atotalreflectionwouldoccurattheinterfacebetweenthecoreandsheathhydrogel,formingalightpropagationpaththroughtheTHFOW.n.( = 450, 515f and 650 nm) could effi ciently be propagated through bath with a temperature of 48 C. When the temperature rose to 52 C, THFOW (Fig. 3a and b; THFOW WaS 10 cm in length). FUrthermore,AsforthedetailedevaluatinglightpropagationpropertiesoftheTHFOW,laserlightwasfocusedononetipofTHFOW,andthescatteredlightintensitywasmeasuredthroughoutthefiberlength(10cm).TheresultsshowedthatlaserlightwithdifferentwavelengthanalysisofthelightintensityprofiIeofscatteredlightthroughtheTHFOWshowedthatthelightlossofalltheTHFOWwithdifferentdiameterswasintherangeof0.17dBcm-to0.41dBCm-1,asshowninFig.3c.ThelightlossthroughtheTHFOWwasoneofthelowestamongtheothersimilaropticalhydrogelfibers,suchasstep-indexhydrogelopticalfiberwithfiberdiameterof800/900m(0.32dBcm1with492nmIaSerlight)上strain-sensinghydrogelopticalfiberswithfiberdiameterof750/1100m(0.45dBCm-Iwith532nmIaSerIight)29andalginate(s>PAAmhydrogel力berwithfiberdiameterof500m(0.25dBcm-,with472nmlaserlight).ItcanbeseenthatTHFOWattenuation,asthelightwithalargerwavelengthhadbettertransmissionthroughTHFOW(SupplementaryFig.1b).Furthermore,theresultsalsoshowthatdiameteroftheTHFOWsslightlyaffectthelightloss;thelargerthediameter,thesmallerthelightloss,whichwasduetothelongerraypropagationdistancesbeforereflectionatthesheath/coreinterfacewithinTHFOW-11.SupplementaryFig.8ashowslaserlightwithdifferentpowercouldallpropagatethroughtheTHFOW,andthelightlossofthelightprofiIesshowsthatlightpowerdidn'taffecttheattenuationofthelightinTHFOW(SupplementaryFig.8b).Inaddition,TheTHFOWcouldbeusedasanimplantablelight-guidetotransportNIRlight(SupplementaryFig.9),howeverispartiallydetectedbythedigitalcameraduetothattheNIRlightisakindofinvisiblelight.Thus,Wetestedthelightattenuationwiththe915nmNIRlightthroughtheTHFOWbythemethodofcutbacktechnique,theresultinFig.3dshowsthatthemeasuredlightlossoftheTHFOWsintheairwereintherangeof-0.32dBcm-:to0.39dBcm-.Temperature-gatedlightpropagationeffectThermosensitivityisakeypropertyoftheTHFOW1whichendowstheopticalhydrogelfiberwithintelligentresponsivenesstoenvironmentaltemperature,thusrealizingcontrollablephotothermalcancertherapyindeeptissue.AsshowninFig.4a,theTHFOWshowedexcellentlightpropagationwhenitwaspartlyimmersedinawaterUOnenUeAa M6-1 d (BP) coccs< 26THFOWaw THFOWtwe IHFOWutt THFOWnF>er Length (cm)Fig. 3 Light propagation through the THFOW. a Laser light with different wavelength ( = 450, 515 and 650 nm) propagate through the THFOW; (b) Laser light propagates through THFOWs with different diameters; (c) Light attenuation of the THFOW calculated from the scattered light intensity along with the THFOWprofi Ie (n = 3 independent experiments), data were presented as mean ± SD; (d) Propagation loss of the 915 nm laser light through THFOWs, measured by a cutback technique (n = 3 independent experiments), data were presented as mean ± SD. Scale bars in (a)r (b) are 1 cm.AirWater:Laser:LightV:LaserVLight4 2Fig. 4 Thermo-sensitivity of the THFOW. a Photos of light propagation through THFOW in water under different temperatures (48 C and 52 0C); (b) Photos of the light propagate through the THFOW with a segment of THFOW heating up and getting cool in sequence; (c) Light int

    注意事项

    本文(Temperature-adaptive hydrogel optical waveguide with soft tissue-affinity for thermal regulated interventional photomedicine.docx)为本站会员(夺命阿水)主动上传,课桌文档仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知课桌文档(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-1

    经营许可证:宁B2-20210002

    宁公网安备 64010402000986号

    课桌文档
    收起
    展开