欢迎来到课桌文档! | 帮助中心 课桌文档-建筑工程资料库
课桌文档
全部分类
  • 党建之窗>
  • 感悟体会>
  • 百家争鸣>
  • 教育整顿>
  • 文笔提升>
  • 热门分类>
  • 计划总结>
  • 致辞演讲>
  • 在线阅读>
  • ImageVerifierCode 换一换
    首页 课桌文档 > 资源分类 > PPT文档下载  

    第5章人工神经网络matlab工具箱.ppt

    • 资源ID:747344       资源大小:719.50KB        全文页数:39页
    • 资源格式: PPT        下载积分:10金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要10金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    第5章人工神经网络matlab工具箱.ppt

    模式识别讲义第5章 人工神经网络,matlab神经网络工具箱,琶狄滔突瞳微临块绰搭吾招哭哈力御塘么掷里蘸侄裔岸莲旦畸务凛郸鸿亦第5章 人工神经网络matlab工具箱第5章 人工神经网络matlab工具箱,主要内容,0 引例:神经网络函数拟合(预测)1 matlab神经网络工具箱2 人工神经网络(ANN)简介3 前馈神经网络(BP网络)4 实例:多元神经网络预测5 实验:神经网络分类,鬼缉幢须旨酉题舍伞凭针舒擒慰妨遣兰抓诀垂祭谍澈垫资婪酚褪蹲耐牢融第5章 人工神经网络matlab工具箱第5章 人工神经网络matlab工具箱,0 引例:神经网络函数拟合(预测),试构造合适的神经网络模型拟合如下数据点,并预测x=10的值:,拧逻铀冤簿汗吧钵奏扣搭榴乞害竖铝锋难拖迟椰搬揩牟邹乔伊躲琴常佛连第5章 人工神经网络matlab工具箱第5章 人工神经网络matlab工具箱,matlab代码,x=0:0.5:9.5;y=0,0.43,0.69,0.74,0.61,0.36,0.08,-0.17,-0.34,-0.4,-0.35,-0.23,-0.08,0.06,0.16,0.21,0.2,0.15,0.07;net=newff(0,9.5,5,1);net.trainParam.epochs=100;net.trainParam.goad=0.000001;net=train(net,x,y);x1=0:0.1:10;y1=sim(net,x1);figure;plot(x,y,.);hold on;plot(x1,y1,r);,痒彻赵枷入牺墟滤涧阐茎蔑齐寨咖愧缩烟惫核开惜潜燥摧谁贤戊练汰劝痴第5章 人工神经网络matlab工具箱第5章 人工神经网络matlab工具箱,f,f,f,f,f,f,x,y,b1,b2,b3,b4,b5,b,网络结构,y=f(w21*f(w11*x+b1)+w25*f(w15*x+b5)+b),w1=net.IW1;w2=net.LW2;b1=net.b1;b2=net.b2;a=tansig(w1*x0+b1);y=tansig(w2*a+b2),Sigmoid函数,适戌奎舟阀郝植疤歧肮渴华阵物浮讲众置眠插将脏近萨荧恶券沟跺醒脯啦第5章 人工神经网络matlab工具箱第5章 人工神经网络matlab工具箱,挎荐印括雄歉呵古营辩亢沟丹膘偏汛胺损隐斋官及友泞准瓜道东茅务众拟第5章 人工神经网络matlab工具箱第5章 人工神经网络matlab工具箱,文梗推鹏饿砰吱节蘑懈伊侧仓鹃供第弛垦谎毁下蕉衅等委菌泻讶贾职辫失第5章 人工神经网络matlab工具箱第5章 人工神经网络matlab工具箱,1 matlab神经网络工具箱,媳肉享钥湖妒陶巍边惋顶塞揣磷翻优嘎娶和站抉策养协棍洱潍伶妻清坷淡第5章 人工神经网络matlab工具箱第5章 人工神经网络matlab工具箱,1.1 网络数据对象的建立,net=newff(xm,xM,h1,hk,f1,fk);xm,xM分别为列向量(行数为变量个数),分别存储每个变量的最小值和最大值。h1,hk表示网络各层的节点数,一共有k层.f1,fk表示各层使用的传输函数,默认为tansig,即Sigmoid函数。还可使用函数purelin,即f(x)=x。其它可看matlab帮助:help newff,西寺隧烬痛卵梆疫励哀筒享消搞片疲斯卖屉往心岗芯浪碳瞳拓阶大卿溶磊第5章 人工神经网络matlab工具箱第5章 人工神经网络matlab工具箱,1.2 网络数据对象net的属性,net.IW:来自输入层的加权矩阵。BP网络只用net.IW1,表示各个输入变量对第1层各节点的加权矩阵。net.LW:来自中间层的加权向量。BP网络用net.IW2,1表示第1隐层个节点向下一层个节点的加权矩阵;net.IW3,2表示第2隐层向下一层的加权矩阵net.b:各层的偏移。Net.b1表示第1隐层个节点的偏移,印净剩爱卫莽重槽拖糟桅女伏怨螟通霉橇哭洽平哀情丧酬阜盲讽露斥寸深第5章 人工神经网络matlab工具箱第5章 人工神经网络matlab工具箱,net.trainParam.epochs:最大训练步数。不过当误差准则满足时,即使没达到此步数也停止训练。缺省为100。net.trainParam.goad:网络误差准则,当误差小于此准则时停止训练,缺省为0。net.trainFcn:训练算法。缺省为 trainlm,即Levenberg-Marquardt算法。还可使用traingdx,即带动量的梯度下降算法;traincgf,即共轭梯度法。其它可看matlab帮助:help-contents-Neural Network Toobox-Network Object Reference;help(net.trainFcn),瞧轻走供怎端蓖湃今朵滔撬查颖砌造什贸氟才骗阶渔宵肃竟区氮犀榷啸毗第5章 人工神经网络matlab工具箱第5章 人工神经网络matlab工具箱,help newffCaution:trainlm is the default training function because it is very fast,but it requires a lot of memory to run.If you get an out-of-memory error when training try doing one of these:Slow trainlm training,but reduce memory requirements by setting net.trainParam.mem_reduc to 2 or more.(See help trainlm.)Use trainbfg,which is slower but more memory-efficient than trainlm.Use trainrp,which is slower but more memory-efficient than trainbfg.,撮孤昼椭蜕戮柞当杭胶瞩醛振纶哟栅跳痞怂废坟毫色钨娜陋膀兜懂联滑艘第5章 人工神经网络matlab工具箱第5章 人工神经网络matlab工具箱,1.3 网络的训练,net,tr,Y1,E=train(net,X,Y);net是函数newff建立的数据对象。X为n*m的矩阵,n为输入变量个数,m为样本数(即把每个样本是一个列向量)。Y为k*m的矩阵,k为数出变量个数。tr返回训练的跟踪信息,tr.epochs为训练步数,tr.perf为各步目标函数的值。Y1和E返回网络最终的输出和误差。训练结束后可以用plotperf(tr)来绘制目标值随着训练步数变化的曲线。,桌像傲鼓嘘吨盯评昨敏泡镐材咖筋菩攘且征掷笼马险贞苹辊戚谅掸羡职秉第5章 人工神经网络matlab工具箱第5章 人工神经网络matlab工具箱,1.4 网络的泛化(预测),Y=sim(net,X);net是函数newff建立的数据对象。X为n*m的矩阵,n为输入变量个数,m为样本数(即把每个样本是一个行向量)。Y为k*m的矩阵,k为数出变量个数。,皋诸沥卡瞻琳菲招邻摩青蛀拥框盗亢瘴拳谦窖盈峙肤峰导防数恳恕沾裳肇第5章 人工神经网络matlab工具箱第5章 人工神经网络matlab工具箱,2 人工神经网络(ANN)简介,抑键惠氧惋缨合甲疼粉傈什锤礁杠推句宴溃整品模琳题锻似伐蒸赢遥蛔霜第5章 人工神经网络matlab工具箱第5章 人工神经网络matlab工具箱,2.1 人工神经网络(ANN)的研究内容,(1)理论研究:ANN模型及其学习算法,试图从数学上描述ANN的动力学过程,建立相应的ANN模型,在该模型的基础上,对于给定的学习样本,找出一种能以较快的速度和较高的精度调整神经元间互连权值,使系统达到稳定状态,满足学习要求的算法。(2)实现技术的研究:探讨利用电子、光学、生物等技术实现神经计算机的途径。(3)应用的研究:探讨如何应用ANN解决实际问题,如模式识别、故障检测、智能机器人等。,题橙藤间蛹百枢删茫间绽最耪与垒翌脱慌蜂逼点觉暖衔粘茁遏嗣檀爷桃桓第5章 人工神经网络matlab工具箱第5章 人工神经网络matlab工具箱,2.2 ANN研究的目的和意义,(1)通过揭示物理平面与认知平面之间的映射,了解它们相互联系和相互作用的机理,从而揭示思维的本质,探索智能的本源。(2)争取构造出尽可能与人脑具有相似功能的计算机,即ANN计算机。(3)研究仿照脑神经系统的人工神经网络,将在模式识别、组合优化和决策判断等方面取得传统计算机所难以达到的效果。,帘噎抗撮昨嵌专狡吻业释署仰塔洋僳廓侣惠赤车糠继口彝拷狮躯蘑枷片垣第5章 人工神经网络matlab工具箱第5章 人工神经网络matlab工具箱,2.3 人工神经网络研究的局限性,(1)ANN研究受到脑科学研究成果的限制。(2)ANN缺少一个完整、成熟的理论体系。(3)ANN研究带有浓厚的策略和经验色彩。(4)ANN与传统技术的接口不成熟。一般而言,ANN与经典计算方法相比并非优越,只有当常规方法解决不了或效果不佳时ANN方法才能显示出其优越性。尤其对问题的机理不甚了解或不能用数学模型表示的系统,如故障诊断、特征提取和预测等问题,ANN往往是最有利的工具。另一方面,ANN对处理大量原始数据而不能用规则或公式描述的问题,表现出极大的灵活性和自适应性。,跟恤牲喘疾凳橙琶抹茨钠挚奈压截代还奥上尊靖滞织要鸣治霸阮淄慨叼湘第5章 人工神经网络matlab工具箱第5章 人工神经网络matlab工具箱,3 前馈神经网络(BP网络),饺刀欲板蛹科湘褐尼焰簿矗前博嗽鸳所毗紧阉蔚祭甜谐迭抱缠膜极慑喻笨第5章 人工神经网络matlab工具箱第5章 人工神经网络matlab工具箱,3.1 前馈神经网络(BP网络)的特点,非线性映照能力:神经网络能以任意精度逼近任何非线性连续函数。在建模过程中的许多问题正是具有高度的非线性。并行分布处理方式:在神经网络中信息是分布储存和并行处理的,这使它具有很强的容错性和很快的处理速度。,噎钒闲榷敖绎裂旺挤登叔涨旱浊镀恫芝忧泼吁木葵孪敢肘糯邮债戈又挪糙第5章 人工神经网络matlab工具箱第5章 人工神经网络matlab工具箱,自学习和自适应能力:神经网络在训练时,能从输入、输出的数据中提取出规律性的知识,记忆于网络的权值中,并具有泛化能力,即将这组权值应用于一般情形的能力。神经网络的学习也可以在线进行。数据融合的能力:神经网络可以同时处理定量信息和定性信息,因此它可以利用传统的工程技术(数值运算)和人工智能技术(符号处理)。多变量系统:神经网络的输入和输出变量的数目是任意的,对单变量系统与多变量系统提供了一种通用的描述方式,不必考虑各子系统间的解耦问题。,颠悠衫绝礁勇近珠八峦寅谎存冯驴纠洪须软榆假逸曝戏熏屁套统棵霍底垄第5章 人工神经网络matlab工具箱第5章 人工神经网络matlab工具箱,3.2 BP网络输入/输出变量的确定,BP网络的输入变量即为待分析系统的内生变量(影响因子或自变量)数,一般根据专业知识确定。若输入变量较多,一般可通过主成份分析方法压减输入变量,也可根据剔除某一变量引起的系统误差与原系统误差的比值的大小来压减输入变量。输出变量即为系统待分析的外生变量(系统性能指标或因变量),可以是一个,也可以是多个。一般将一个具有多个输出的网络模型转化为多个具有一个输出的网络模型效果会更好,训练也更方便。,诱持栋冻骑逗侈盅整致渭柔臂拦宁面叼牺枚尺置捏捞村狸毡色贺涨庞熙手第5章 人工神经网络matlab工具箱第5章 人工神经网络matlab工具箱,3.3 BP网络数据的预处理,由于BP神经网络的隐层一般采用Sigmoid转换函数,为提高训练速度和灵敏性以及有效避开Sigmoid函数的饱和区(即输入值若大于1,则取为1),一般要求输入数据的值在01之间(每个数都除于最大值)。如果输出层节点也采用Sigmoid转换函数,输出变量也必须作相应的预处理,为保证建立的模型具有一定的外推能力,最好使数据预处理后的输出变量的值在0.20.8之间。预处理的数据训练完成后,网络输出的结果要进行反变换才能得到实际值。,脖碉勘蹋炊肮老韭孺掀熔昼食井达窝路狸挨探根筷怕老担排才此概反凶院第5章 人工神经网络matlab工具箱第5章 人工神经网络matlab工具箱,3.4 BP网络隐层数的确定,一般认为,增加隐层数可以降低网络误差(也有文献认为不一定能有效降低),提高精度,但也使网络复杂化,从而增加了网络的训练时间和出现“过拟合”的倾向。Hornik等早已证明:若输入层和输出层采用线性转换函数,隐层采用Sigmoid转换函数,则含一个隐层的MLP网络能够以任意精度逼近任何有理函数。显然,这是一个存在性结论。在设计BP网络时可参考这一点,应优先考虑3层BP网络(即有1个隐层+输入层输出层)。一般地,靠增加隐层节点数来获得较低的误差,其训练效果要比增加隐层数更容易实现。对于没有隐层的神经网络模型,实际上就是一个线性或非线性(取决于输出层采用线性或非线性转换函数型式)回归模型。,滦喜池阶蔽粪贡附象癌寄璃碟欺蚁密爆激频涝塌截甘弗扼励穷蜘插箔卞淘第5章 人工神经网络matlab工具箱第5章 人工神经网络matlab工具箱,3.5 BP网络隐层节点数的确定,在BP 网络中,隐层节点数的选择非常重要,它不仅对建立的神经网络模型的性能影响很大,而且是训练时出现“过拟合”的直接原因,但是目前理论上还没有一种科学的和普遍的确定方法。确定隐层节点数的最基本原则是:在满足精度要求的前提下取尽可能紧凑的结构,即取尽可能少的隐层节点数。研究表明,隐层节点数不仅与输入/输出层的节点数有关,更与需解决的问题的复杂程度和转换函数的型式以及样本数据的特性等因素有关。,靠甜负冠移诛伴肩抉咒酿拌料说邯岂伏制迭膀颓篙粥庇畜兢挚杏贱棱牵剧第5章 人工神经网络matlab工具箱第5章 人工神经网络matlab工具箱,在确定隐层节点数时必须满足下列条件:(1)隐层节点数必须小于N-1(其中N为训练样本数),否则,网络模型的系统误差与训练样本的特性无关而趋于零,即建立的网络模型没有泛化能力,也没有任何实用价值。同理可推得:输入层的节点数(变量数)必须小于N-1。(2)训练样本数必须多于网络模型的连接权数,一般为210倍,否则,样本必须分成几部分并采用“轮流训练”的方法才可能得到可靠的神经网络模型。,椰剩絮饶药转擅乡庐滥脱玉肚巢平恒蔡橡剥迢湖夫解赠哆顾牲袄闺仪先姓第5章 人工神经网络matlab工具箱第5章 人工神经网络matlab工具箱,3.6 BP网络的训练算法,由于BP网络采用误差反传算法,其实质是一个无约束的非线性最优化计算过程,在网络结构较大时不仅计算时间长,而且很容易限入局部极小点而得不到最优结果。目前虽已有改进BP法、遗传算法(GA)和模拟退火算法等多种优化方法用于BP网络的训练(这些方法从原理上讲可通过调整某些参数求得全局极小点),但在应用中,这些参数的调整往往因问题不同而异,较难求得全局极小点。这些方法中应用最广的是增加了冲量(动量)项的改进BP算法。,谢脖迄屯牢存舰耐陌磅差敞撂榷稻答钝拨涉镜砧爱液按号暂励摸俘瞳枷将第5章 人工神经网络matlab工具箱第5章 人工神经网络matlab工具箱,3.7 BP网络的学习率和冲量系数的选择,学习率影响系统学习过程的稳定性。大的学习率可能使网络权值每一次的修正量过大,甚至会导致权值在修正过程中超出某个误差的极小值呈不规则跳跃而不收敛;但过小的学习率导致学习时间过长,不过能保证收敛于某个极小值。所以,一般倾向选取较小的学习率以保证学习过程的收敛性(稳定性),通常在0.010.8之间。增加冲量项的目的是为了避免网络训练陷于较浅的局部极小点。理论上其值大小应与权值修正量的大小有关,但实际应用中一般取常量。通常在01之间,而且一般比学习率要大。,竟其痔谚想志轩副虑昼劳练郸疫肮允丽乌碳鬼飘掩直饭握述咆条欣泅缺斡第5章 人工神经网络matlab工具箱第5章 人工神经网络matlab工具箱,3.8 BP网络的初始连接权值,BP算法决定了误差函数一般存在(很)多个局部极小点,不同的网络初始权值直接决定了BP算法收敛于哪个局部极小点或是全局极小点。因此,要求计算程序(matlab)必须通过多次(通常是几十次)改变网络初始连接权值求得相应的极小点,才能通过比较这些极小点的网络误差的大小,确定全局极小点。由于Sigmoid转换函数的特性,一般要求初始权值分布在-0.50.5之间比较有效。神经网络的训练过程本质上是求非线性函数的极小点问题,因此,即使网络误差相同,各个网络连接权值也可能有较大的差异,这有时也会使各个输入变量的重要性发生变化,检验样本和测试样本的网络计算结果会产生很大变化,即多模式现象。,友郁顿掳矾饭娠机屹犹叁灶敷厦炭改烤淌患潮澄团克糊草炳患挣颧私歇吗第5章 人工神经网络matlab工具箱第5章 人工神经网络matlab工具箱,3.9 BP网络的性能和泛化能力,因为训练样本的误差可以达到很小,因此,用从总样本中随机抽取的一部分测试样本的误差表示网络模型计算和预测所具有的精度(网络性能)是合理的和可靠的。值得注意的是,判断网络模型泛化能力的好坏,主要不是看测试样本误差大小的本身,而是要看测试样本的误差是否接近于训练样本和检验样本的误差。,疹铱达手你精阂羚入鸡淮畅宽训汝君棒林蛆叶痔米皂嫂声刷锨棋完战兹皱第5章 人工神经网络matlab工具箱第5章 人工神经网络matlab工具箱,4 实例:多元神经网络预测,艇缆管瞩嘶怨馁晰吼知盐旗挎歌言亩体展聘烁逗独果苏烛孤督礁馁滋莱箔第5章 人工神经网络matlab工具箱第5章 人工神经网络matlab工具箱,训练样本,滓涩也椭绿缆瘪裔托笼持驳兜钻逗您闺容楔服雕芦磊渤夷恳诲氯萌州个来第5章 人工神经网络matlab工具箱第5章 人工神经网络matlab工具箱,检验样本,账炊旱舆妓训殆性蛾蛛育市奖的丛隙鹿尔妙蛰娩割痈颊热蒙遮见腺渊蚕崎第5章 人工神经网络matlab工具箱第5章 人工神经网络matlab工具箱,网络分为4层。各层节点数分别为:输入层2个;第一隐层12个;第二隐层6个;输出层1个。,网络结构,次淘试多硕膊凛握呸虫挚咕晰液饿庶湃赠寻臂肌铁卒粮拷妮铭堕浩香唆拈第5章 人工神经网络matlab工具箱第5章 人工神经网络matlab工具箱,模型的参数,数据预处理,输入数据和输出数据都规格化为0到1:最大训练步数 net.trainParam.epochs=100000收敛误差界值 net.trainParam.goad=0.0001,篇桑天搪忍龙然舰馁域溃仑寒怂靠匀鸣矿慈抛钱堡某饵查釜宗疽圈巫锤旨第5章 人工神经网络matlab工具箱第5章 人工神经网络matlab工具箱,BP网络训练误差曲线,售勿橡怖芽话橡扫邑吾猜火沾肤择掐渡豆锰详井芹集而钻竿万叹进灾时例第5章 人工神经网络matlab工具箱第5章 人工神经网络matlab工具箱,UV254值,臭氧浓度 mg/L,UV254去除率,,网络模型,脚衬瞅哆诈愁脱墩舵寝陈粉笺鸯罢挂苗褂凸拌危斥兼暗饶倒揖绳吠材泵拭第5章 人工神经网络matlab工具箱第5章 人工神经网络matlab工具箱,模型预测结果与实测值比较,谓奥嗣瞧旋进无拈惫冤瑟杭甜栽糯床唾尧俄冠鬼淑砰裴喇牌壕睫变娠隶亿第5章 人工神经网络matlab工具箱第5章 人工神经网络matlab工具箱,5 实验:神经网络分类,吴齐氏竣碘肿挤迫鞭宵及睬酷嘻撼漾福朴栗油梅柑捐展闭灵括奄莎傈颓旺第5章 人工神经网络matlab工具箱第5章 人工神经网络matlab工具箱,

    注意事项

    本文(第5章人工神经网络matlab工具箱.ppt)为本站会员(夺命阿水)主动上传,课桌文档仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知课桌文档(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-1

    经营许可证:宁B2-20210002

    宁公网安备 64010402000986号

    课桌文档
    收起
    展开