欢迎来到课桌文档! | 帮助中心 课桌文档-建筑工程资料库
课桌文档
全部分类
  • 党建之窗>
  • 感悟体会>
  • 百家争鸣>
  • 教育整顿>
  • 文笔提升>
  • 热门分类>
  • 计划总结>
  • 致辞演讲>
  • 在线阅读>
  • ImageVerifierCode 换一换
    首页 课桌文档 > 资源分类 > PPT文档下载  

    第7章人工神经网络.ppt

    • 资源ID:750423       资源大小:658.50KB        全文页数:28页
    • 资源格式: PPT        下载积分:10金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要10金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    第7章人工神经网络.ppt

    第7章 人工神经网络,BP网络及学习过程BP网络结构设计分类识别举例,BP网络及学习过程,一.人工神经网络 1.生物神经元与人工神经元人脑的结构:脑主要由大脑半球、脑干和小脑组成。大脑半球由大脑皮质构成。,脑的功能:人类大脑皮质的不同部分行使不同的功能。大脑皮质有6层结构,大小及形状各异的神经细胞构成了复杂的神经网。大脑与脑的高级功能如记忆和学习密切相关。小脑主要与运动控制及生物功能有关,相当于3万台普通计算机的处理能力。,生物神经元(神经细胞):人的大脑由近140亿个不同种类的神经元组成,其主要功能是传输信息。一个神经元的结构如图示。细胞体:接受和处理信息的单元。轴突:向外传送从细胞体发出的信息。树突:从周围收集其他神经元发出的信息。突触:是一个神经元与另一个神经元相联系的部位。,人工神经元模型,常用的输出函数:1.阈值函数神经元输出为,设阈值该神经元的作用相当于一个n-1维超平面对n维空间的分割。如果两类样本可以被一个超平面分开,则能够用一个神经元实现分类。上述神经元又被成为单层感知器。,2.Sigmoid 函数 对于一些重要的学习算法,要求输出函数可微,此时通常选用Sigmoid函数。,二.BP神经网络 三层前馈网络,三层前馈网络的学习算法的主要困难是中间的隐层不直接与外界连接,无法直接计算其连接权值。BP网络是一种多层前馈网络,因使用误差反向传播算法(Back-Propogation)进行学习而得名,简称BP算法。该网络神经元的作用函数采用Sigmoind函数。BP算法的基本思想:根据样本数据构造一个误差函数,通过梯度下降法利用迭代运算求解权值。,算法分为两个阶段:(1)(正向过程)输入信息从输入层经隐层逐层计算个单元的输出值;(2)(误差反向传播过程)误差由输出层逐层向输入层方向传播计算出每个单元的误差,并用此误差修正输入层权值。,三.BP算法原理,信号前向传播,误差反向传播,将输入信号 输入网络,经过中间层(隐层)传向输出层,得到输出信息输出层神经元的输出和教师信号的平方误差定义为,先求输出层与中间层间的权值更新量:式中,为正的常数,为输出层神经元 的 值,求中间层与输入层间的权值更新量:,可以看出,PB算法的计算思想是要计算网络连接权值的修正量,需要首先计算网络每一层神经元的输出,然后反向计算各神经元的误差传播值。,权值更新量=(学习系数)x x(输出函数微分值)x(神经元 输出),输出函数为Sigmoid函数时 有 则输出层神经元的 值为,误差,S函数f(x)的微分值,中间层神经元的 值,BP算法步骤:1.网络初始化 权值的初始值用小的随机数设定,选定 的终止值,步长控制量2.输入向量的输入(向前)首先,将输入向量输入给输入层。输入向量向输出层传播;对各神经元,求来自前层神经元的附加权值和,由Sigmoid函数决定输出值;(输出值)=f(输入和)(1)3.向输出层输入教师信号 将与输入向量对应的教师向量提供给输出层,计算误差值,若,则算法结束;否则,转4,,4.误差逆传播的权值学习(反向)根据(新权值)=(旧权值)+(常数)X X(神经元输出)(2)进行权值更新,式中的(神经元输出)是指权值连接的二个神经元中,来自前面的神经元输出,按以下求出:连接输出层的权值学习时:=(输出)1(输出)x(教师信号)(神经元输出)(3)S函数的微分值 误差 除此以外的权值学习时:=(输出)1(输出)x(来自紧接其后层的 的附加权值和)(4)S函数的微分值 误差5.返回到2 重复进行24,进行权值的学习。,人工神经网络模式识别方法的特点:优势:1.具有较强的容错性,能够识别带有噪声的输入模式2.具有很强的自适应学习能力3.可以实现特征空间较复杂的划分4.能够适用于高速并行处理系统实现弱点:1.需要较多的训练样本2.学习速度较慢,BP网络的结构设计,所谓网络结构,是指输入层的神经元个数,中间层(隐层)的层数及其神经元个数,输出层神经元个数,各层神经元之间的链接权值大小。1.输入层和输出层的神经元个数 输入层的神经元个数由模式的维数决定,输出层的神经元个数由识别问题决定。2.隐层的层数与神经元个数 理论证明,三层BP网络可以实现任意的非线性映射,因此,常用三层网络,即只有一个隐层。隐层神经元个数的确定是BP网络结构设计的主要任务之一。,隐层神经元个数对网络学习性能的影响(1)太少(网络规模太小)网络实际输出和期望输出之间的拟合度不高,其处理复杂问题的能力不足,即网络的学习能力不足,易产生学习不收敛的问题。(2)太多(网络规模太大)网络具有较好的学习精度,但易导致其泛化能力较差,产生过学习(过拟合)现象,即随着连续学习,平方误差会变小,但对于评价用的识别样本,反而出现识别效果变差的现象。,可以看出,隐层神经元个数的确定是重要的,也是比较困难的。解决的方法:(1)经验公式 式中,L为输入层节点个数,M为输出层节点个数,为(110)的整数。,(2)优化的方法 将网络结构和连接权值看做被优化对象,以输出神经元的误差函数为目标函数,采用优化方法进行优化。由于神经元数量和连接权值的数量所构成的数据规模比较庞大,用传统的数学方法难以解决该优化问题,因此,现代的一些人工智能优化方法受到关注,如遗传算法,粒子群优化算法等,并取得了很好的效果。,分类识别举例,1.标准测试数据 UCI(University of California Irvine)标准数据集是测试模式识别领域分类器设计性能的一个公开的通用的标准数据集。其中:Iris数据集共有150个样本,总共分为三类,每类有50组数据,模式特征数为4。Ionosphere数据集共有351个样本,总共分为两类,其中A类有127组数据,B类共224组数据,模式特征数为34。Breast cancer数据集共有569个样本,总共分为两类,A类有212组数据,B类有357组数据,模式特征数为30.,2.学习样本和测试样本 将测试数据集中的数据分为两部分,一部分样本作为学习样本,其他的作为识别样本。一般地,学习样本取7080%对于Iris数据集:从三类数据中各随机选40组作为学习样本,其它的作为识别样本;误差指标为0.007 对于Ionosphere 数据集:从A类中随机选100组、B类中随机选180组作为学习样本,其它的用于识别样本;误差指标为0.003 对Breast cancer数据集:从A类中随机选180组、从B类中随机选280组作为学习样本,其它的作为识别样本。误差指标为0.001,3.结果,

    注意事项

    本文(第7章人工神经网络.ppt)为本站会员(夺命阿水)主动上传,课桌文档仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知课桌文档(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-1

    经营许可证:宁B2-20210002

    宁公网安备 64010402000986号

    课桌文档
    收起
    展开