第9章 地面沉降的工程地质研究.ppt
第十三章 地面沉降问题的工程地质分析,提 要,基本概念及研究意义地面沉降的形成机制地面沉降的产生条件地面沉降的研究、预测及防治,一.基本概念及研究意义,地面沉降地面沉降是指在一定的地表面积内所发生的地面水平面降低的现象。地面沉降现象很早就为史书所记载。作为自然灾害,地面沉降的发生有着一定的地质原因。但是,随着人类社会经济的发展、人口的膨胀,地面沉降现象越来越频繁,沉降面积也越来越大。在人口密集的城市,地面沉降现象尤为严重。现在我们研究地面沉降的原因时,不难发现,人为因素已大大超过了自然因素。现在的地面沉降现象与其说是自然灾害,倒不如称之为人为祸患。,地面沉降的地质原因 从地质因素看,自然界发生的地面沉降大致有下列3种原因。1.地表松散地层或半松散地层等在重力作用下,在松散层变成致密的、坚硬或半坚硬岩层时,地面会因地层厚度的变小而发生沉降。2.因地质构造作用导致地面凹陷而发生沉降。3.地震导致地面沉降。,地面沉降的人为原因 地面沉降现象与人类活动密切相关。尤其是近几十年来,人类过度开采石油、天然气、固体矿产、地下水等直接导致了今天全球范围内的地面沉降。在我国,由于各大中城市都处于巨大的人口压力之下,地下水的过度抽采更为严重,导致大部分城市出现地面沉降,在沿海地区还造成了海水入侵。地面沉降导致了地表建筑和地下设施的破坏。据统计,我国每年因地面沉降导致的经济损失达1亿元人民币以上。值得庆幸的是,我国已开始重视这个问题,控制人口增长、合理开采地下水等一系列政策的出台使我国很多地区的地面沉降现象已经或将得到控制。,主要危害(1).沿海地区沉降使地面低于海面,受海水侵袭;(2)一些港口城市,由于码头、堤岸的沉降而丧失或降低了港湾设施的能力;(3)桥墩下沉,桥梁净空减小,影响水上交通.(4)在一些地面沉降强烈的地区,伴随地面垂直沉陷而发生的较大水平位移,往往会对许多地面和地下构筑物造成巨大危害;(5)在地面沉降区还有一些较为常见的现象,如深井管上升、井台破坏,高摆脱空,桥墩的不均匀下沉等,这些现象虽然不致于造成大的危害,但也会给市政建设的各方面带来一定影响。,天津市地面沉降,西安市地面沉降,上个世纪90年代以来,由于采取限采、禁采地下水和回灌地下水等措施,上海、嘉兴、宁波等地沉降速度趋缓,但总体沉降范围却在迅速扩展。如杭、嘉、湖的沉降正向整个平原蔓延,长江三角洲地区的地面沉降在区域上有连成一片的趋势。苏锡常地区的沉降速度也在加大,苏州市自1949年以来累计地面沉降600毫米的面积已达180平方公里,常州43平方公里,无锡59.5平方公里。地面沉降最严重的是上海,其次是苏锡常,再次是杭嘉湖。40年来,上海市因地面沉降的直接经济损失达2900亿元,其中潮损1755亿元,涝损848亿元,安全高程损失189亿元。,北京供水三分之二来自地下水。近年来,由于地下水的超量开采,北京平原地面沉降呈快速增加趋势。到目前为止,在东郊八里庄大郊亭、东北郊来广营、昌平沙河八仙庄、大兴榆垡礼贤、顺义平各庄等地已经形成了五个较大的沉降区,沉降中心累计沉降量分别达到722毫米、565毫米、688毫米、661毫米、250毫米。最严重的地方,地表还在以每年20至30毫米的速度下沉。由于地面沉降,北京城市基础设施受到一定程度的损害。在部分沉降区发现工厂、居民区楼房墙壁开裂、地基下沉、地下管道工程损坏等50余处险情,一些建筑物的抗震能力和使用寿命也受到影响。,北京每年平均超采地下水约1亿立方米,这是造成地面沉降的主要原因。近年来,北京市每年开采地下水量达26亿至27亿立方米平均每年超采1亿立方米。在2003年,北京平原形成的5个沉降区中,形成了近1100平方公里的降落漏斗,导致大面积地面沉降,根据1999年的统计数据,累计地面沉降量大于50毫米的地区达到2815平方公里。,二.地面沉降的形成机制1 承压水位降低所引起的应力转变及土层的压密 位于末固结或半固结疏松沉积层地区内的大城市,因为潜水易于污染往往开发深层的承压水作为工业及生活用水的水源。在孔隙承压含水层中,抽汲地下水所引起的承压水位的降低,必然要使含水层本身和其上、下相对含水层中的孔隙水压力随之而减小。根据有效应力原理可知,土中由复盖层荷载引起的总应力是由孔隙中的水和土颗粒骨架共同承担的。,由水承担的部分称为孔隙水压力,它不能引起土层的压密,故又称为中性压力,而由土骨架承担的部分则能直接造成土层的压密,故称为有效应力;二者之和等于总应力。假定抽水过程中土层内的总应力不变,那么孔隙水压力的减小必然导致土中有效应力的等量增大,结果就会引起土层成比例的固结。由于区域性地面沉降范围较广阔,压缩层厚度与沉降范围相比较,又相对较小,因此无论从理论或实际应用上,即可以把这类由于抽水引起的地面沉降问题按一维固结问题处理。以三层结构条件下单层抽水的情况为例,对抽水过程中土层中应力的转变及土层的固结问题进行具体分析。,由于透水性能的显著差异,上述孔隙水压力减小,有效应力相应增大的过程,在砂层和粘土层中的表现是截然不同的。在砂层中这一过程基本上标志着固结进展程度的应力转换线逐渐地向最终边界线推进(图1),而达到AB线(与降低后的承压水位相平衡的孔隙水压力线)所需的时间,正如模型试验(图2)所表明的,往往需要几个月、几年甚至几十年(取决于土层厚度和透水性)。这样,在承压水位降低后,直到应力转变过程(也就是固结过程)最终完成之前的相当长的一段时间里,粘土层中始终不同程度地存在有高于和新的承压水位相平衡的孔隙水压力,这部分孔隙水压力通常被称为剩余孔隙水压力或超孔隙水压力。,图1,图2 由承压水头降低引起的土层固结的模拟试验结果,土层内现有的剩余孔隙水压力的大小,是衡量该土层在现存的应力条件下可能最终产生的固结、压密的强烈程度的重要标志,通常可以通过实测加以查明。以上通过一种较简单的三层结构、单层抽水模式的机制。其它多层结构(甚至多层抽水)类型的沉降机制仍然是相同的,所以就不再一一地进行讨论了。,2.土层的性质及其变化与地面沉降的关系(1).土层的固结状态与地面沉降的关系 讨论了承压水位下降引起地面沉降尽管情况要复杂得多。如前所述,在土的固结、压密过程中起作用的只是有效应力,也就是说,土的固结、压密程度主要取决于曾经作用于土体上的有效应力的大小。通常将曾经作用于土层中的最大有效应力称为该土层的予固结应力(或先期固结应力),它相当于压缩曲线上开始的近水平段终点处的压力值,故可通过实验加以测定。,如果抽水前土层不同深度处的固结程度都与土中现有的天然有效应力此相适应,那么这种土层就称为正常固结的土层,此时该土层内的天然孔隙水压力线(即静水压力线)与预固结应力线相重合。这里所谓的预固结应力线,是指在不同深度上,从总应力线向左方截取该深度土的预固结应力值所得各点的连续。倘若当前土层内不同深度处的固结程度不与现有的天然有效应力此相适应,在相同的条件下,超固结土层的压密量将小于正常固结土层,同理欠固结土层的压密量则将大于正常固结土层。,(3).砂层与粘土层的压密在地面沉降中的相对重要性 在较低的有效应力增长条件下,粘土层的压密在地面沉降中起主要作用,而在水位回升过程中,砂层的膨胀回弹则有决定意义。,三.地面沉降的产生条件 从前面的讨论中可以看出,地面沉降的产生需要一定的地质、水文地质条件和土层内的应力转变(由水所承担的那部分应力不断转移到土颗粒上)条件。从地质、水文地质条件来看,疏松的多层含水体系;其中承压含水层的水量丰富,适于长期开采;开采层的影响范围内,特别是它的顶、底板,有厚层的正常固结甚或欠固结的可压缩性粘性土层等,对于地面沉降的产生是特别有利的。,从土层内的应力转变条件来看,承压水位大幅度波动式的趋势性降低,则是造成范围不断扩大的、累进性应力转变的必要前提。四.地面沉降的研究、预测及防治 1.地面沉降的工程地质研究 为了掌握地面沉降的规律和特点,合理拟定控制地面沉降的措施,研究工作必须包括下述内容:(1)地区地质结构的研究;(2)地面水准点的定期测量,,(3)地下水开采量统计及地下水位的长期观测;(4)粘性土层孔隙水压力的观测;(5)土层性质的测试;(6)各土层实际沉降量的监测及土性参数的反算。其中前三项工作属常规性质,用一般通用的方法进行。粘性土层孔隙水压力的观测 为研究抽、灌水作用下,土层不同深度处孔隙水压力的有关数据,应有计划地开展现场孔隙水压力观测工作。除常规土工试验外,还需进行以下一些专门性质的试验研究工作:,为此,需在不同地区的粘性土层内埋没孔隙水压力观测孔,在夏季用水期一般每5天观测一次,其他季节每10天一次。土层性质的测试研究 从地面沉降角度研究土层的性质 压缩试验,高压固结试验 各土层实际沉降量的监测及土层性质参数的反算 基岩标与分层标的埋设,合成孔径雷达(InSAR)和 全球卫星定位系统(GPS)的应用。,2.地面沉降的预测及防治 防治地面沉降的原则和方法 控制地下水开采和地下水人工回灌从1966年起,上海开始限采地下水,向地层回灌自来水,“冬灌夏用”、“夏灌冬用”,以地下含水层储能及开采深部含水层等众多措施把上海地面沉降稳住,1966年至1971年还出现了回弹3毫米。上海市过去地下水取水点多如牛毛,现在已经压缩到800个左右。地下水年开采量从过去的2亿立方米,下降至2002 年的9635 万立方米。上海采取控制地下水开采和地下水人工回灌两大措施,使上海地面沉降从历史最高的年沉降量110毫米,下降至目前的年沉降量10毫米左右。,