欢迎来到课桌文档! | 帮助中心 课桌文档-建筑工程资料库
课桌文档
全部分类
  • 党建之窗>
  • 感悟体会>
  • 百家争鸣>
  • 教育整顿>
  • 文笔提升>
  • 热门分类>
  • 计划总结>
  • 致辞演讲>
  • 在线阅读>
  • ImageVerifierCode 换一换
    首页 课桌文档 > 资源分类 > DOCX文档下载  

    introductory-econometrics-for-finance--Chapter4-solutions.docx

    • 资源ID:780707       资源大小:54.30KB        全文页数:13页
    • 资源格式: DOCX        下载积分:5金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要5金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    introductory-econometrics-for-finance--Chapter4-solutions.docx

    SolutionstotheReviewQuestionsattheEndofChapter41. Inthesamewayaswemakeassumptionsaboutthetruevalueofbetaandnottheestimatedvalues,wemakeassumptionsaboutthetrueunobservabledisturbancetermsratherthantheirestimatedcounterparts,theresiduals.Weknowtheexactvalueoftheresiduals,sincetheyaredefinedbyli=H一.Sowedonotneedtomakeanyassumptionsabouttheresidualssincewealreadyknowtheirvalue.Wemakeassumptionsabouttheunobservableerrortermssinceitisalwaysthetruevalueofthepopulationdisturbancesthatwearereallyinterestedin,althoughweneveractuallyknowwhattheseare.2. Wewouldliketoseenopatternintheresidualplot!Ifthereisapatternintheresidualplot,thisisanindicationthatthereisstillsome"action”orvariabilityleftiny?thathasnotbeenexplainedbyourmodel.Thisindicatesthatpotentiallyitmaybepossibletoformabettermodel,perhapsusingadditionalorcompletelydifferentexplanatoryvariables,orbyusinglagsofeitherthedependentorofoneormoreoftheexplanatoryvariables.Recallthatthetwoplotsshownonpages157and159,wheretheresidualsfollowedacyclicalpattern,andwhentheyfollowedanalternatingpatternareusedasindicationsthattheresidualsarepositivelyandnegativelyautocorrelatedrespectively.Anotherproblemifthereisa,patternz,intheresidualsisthat,ifitdoesindicatethepresenceofautocorrelation,thenthismaysuggestthatourstandarderrorestimatesforthecoefficientscouldbewrongandhenceanyinferenceswemakeaboutthecoefficientscouldbemisleading.3. Theratiosforthecoefficientsinthismodelaregiveninthethirdrowafterthestandarderrors.Theyarecalculatedbydividingtheindividualcoefficientsbytheirstandarderrors.=0.638+0.402及L0.891胃=o.96灰?=o.89(0.436)(0.291)(0.763)f-ratios1.461.38-1.17Theproblemappearstobethattheregressionparametersareallindividuallyinsignificant(i.e.notsignificantlydifferentfromzero),althoughthevalueofR2anditsadjustedversionarebothveryhigh,sothattheregressiontakenasawholeseemstoindicateagoodfit.Thislookslikeaclassicexampleofwhatwetermnearmulticollinearity.Thisiswheretheindividualregressorsareverycloselyrelated,sothatitbecomesdifficulttodisentangletheeffectofeachindividualvariableuponthedependentvariable.Thesolutiontonearmulticollinearitythatisusuallysuggestedisthatsincetheproblemisreallyoneofinsufficientinformationinthesampletodetermineeachofthecoefficients,thenoneshouldgooutandgetmoredata.Inotherwords,weshouldswitchtoahigherfrequencyofdataforanalysis(e.g.weeklyinsteadofmonthly,monthlyinsteadofquarterlyetc.).Analternativeisalsotogetmoredatabyusingalongersampleperiod(i.e.onegoingfurtherbackintime),ortocombinethetwoindependentvariablesinaratio(e.g.xztW).Other;moreadhocmethodsfordealingwiththepossibleexistenceofnearmulticollinearitywerediscussedinChapter4:-Ignoreit:ifthemodelisotherwiseadequate,i.e.statisticallyandintermsofeachcoefficientbeingofaplausiblemagnitudeandhavinganappropriatesign.Sometimes,theexistenceofmulticollinearitydoesnotreducetheratiosonvariablesthatwouldhavebeensignificantwithoutthemulticollinearitysufficientlytomaketheminsignificantItisworthstatingthatthepresenceofnearmulticollinearitydoesnotaffecttheBLUEpropertiesoftheOLSestimator-i.e.itwillstillbeconsistent,unbiasedandefficientsincethepresenceofnearmulticollinearitydoesnotviolateanyoftheCLRMassumptions1-4.However,inthepresenceofnearmulticollinearity,itwillbehardtoobtainsmallstandarderrors.Thiswillnotmatteriftheaimofthemodel-buildingexerciseistoproduceforecastsfromtheestimatedmodel,sincetheforecastswillbeunaffectedbythepresenceofnearmulticollinearitysolongasthisrelationshipbetweentheexplanatoryvariablescontinuestoholdovertheforecastedsample.-Droponeofthecollinearvariables-sothattheproblemdisappears.However,thismaybeunacceptabletotheresearcheriftherewerestrongaprioritheoreticalreasonsforincludingbothvariablesinthemodel.Also,iftheremovedvariablewasrelevantinthedatageneratingprocessforytanomittedvariablebiaswouldresult.-Transformthehighlycorrelatedvariablesintoaratioandincludeonlytheratioandnottheindividualvariablesintheregression.Again,thismaybeunacceptableiffinancialtheorysuggeststhatchangesinthedependentvariableshouldoccurfollowingchangesintheindividualexplanatoryvariables,andnotaratioofthem.4. (a)TheassumptionofKomoscedasticityisthatthevarianceoftheerrorsisconstantandfiniteovertime.Technically,wewrite(b) Thecoefficientestimateswouldstillbethe“correct"ones(assumingthattheotherassumptionsrequiredtodemonstrateOLSoptimalityaresatisfied),buttheproblemwouldbethatthestandarderrorscouldbewrong.Henceifweweretryingtotesthypothesesaboutthetrueparametervalues,wecouldendupdrawingthewrongconclusions.Infact,forallofthevariablesexcepttheconstant,thestandarderrorswouldtypicallybetoosmall,sothatwewouldenduprejectingthenullhypothesistoomanytimes.(c) Thereareanumberofwaystoproceedinpractice,including-UsingKeteroscedasticityrobuststandarderrorswhichcorrectfortheproblembyenlargingthestandarderrorsrelativetowhattheywouldhavebeenforthesituationwheretheerrorvarianceispositivelyrelatedtooneoftheexplanatoryvariables.-Transformingthedataintologs,whichhastheeffectofreducingtheeffectoflargeerrorsrelativetosmallones.5.(a)ThisiswherethereisarelationshipbetweenthehandTthresiduals.RecallthatoneoftheassumptionsoftheCLRMwasthatsucharelationshipdidnotexist.Wewantourresidualstoberandom,andifthereisevidenceofautocorrelationintheresiduals,thenitimpliesthatwecouldpredictthesignofthenextresidualandgettherightanswermorethanhalfthetimeonaverage!(b) TheDurbinWatsontestisatestforfirstorderautocorrelation.Thetestiscalculatedasfollows.Youwouldrunwhateverregressionyouwereinterestedin,andobtaintheresiduals.Thencalculatethestatistic(-J2DW=2=22r-2YouwouldthenneedtolookupthetwocriticalvaluesfromtheDurbinWatsontables,andthesewoulddependonhowmanyvariablesandhowmanyobservationsandhowmanyregressors(excludingtheconstantthistime)youhadinthemodel.Therejection/non-rejectionrulewouldbegivenbyselectingtheappropriateregionfromthefollowingdiagram:Reject:positiveInconclusiveautocorrelationIIIDonotrejectRejectH:NOevidenceInconclusivenegativeofautocorrelationautocorrelationIIIIodLdu24-du4-dL4(c) Wehave60observations,andthenumberofregressorsexcludingtheconstanttermis3.Theappropriatelowerandupperlimitsare1.48and1.69respectively,sotheDurbinWatsonislowerthanthelowerlimit.Itisthusclearthatwerejectthenullhypothesisofnoautocorrelation.Soitlooksliketheresidualsarepositivelyautocorrelated.(d) a±=四+Bax+故3,+BaZ+w,Theproblemwithamodelentirelyinfirstdifferences,isthatoncewecalculatethelongrunsolution,allthefirstdifferencetermsdropout(asinthelongrunweassumethatthevaluesofallvariableshaveconvergedontheirownlongrunvaluessothatyt=yt-etc.)Thuswhenwetrytocalculatethelongrunsolutiontothismodel,wecannotdoitbecausethereisn,talongrunsolutiontothismodel!(e) Ayr=AI+0axli+Psx2t-+3-+匕Theanswerisyes,thereisnoreasonwhywecannotuseDurbinWatsoninthiscase.Youmayhavesaidnoherebecausetherearelaggedvaluesoftheregressors(thexvariables)variablesintheregression.InfactthiswouldbewrongsincetherearenolagsoftheDEPENDENT引variableandhenceDWcanstillbeused.6. Ayr=+Qx*+B4n+A-1÷Ar2r-1+Bs%+A-4÷%Themajorstepsinvolvedincalculatingthelongrunsolutionareto-setthedisturbancetermequaltoitsexpectedvalueofzero-dropthetimesubscripts-removealldifferencetermsaltogethersincethesewillallbezerobythedefinitionofthelongruninthiscontext.Followingthesesteps,weobtain=A+Ay+52+Py+P3Wenowwanttorearrangethistohaveallthetermsinxztogetherandsothatyisthesubjectoftheformula:iys2ft3P3Ay=-5×2-(A÷Pi)£v_BBSX(A+A)yx9x1BaBJAThelastequationaboveisthelongrunsolution.7. Ramsey1sRESETtestisatestofwhetherthefunctionalformoftheregressionisappropriate.Inotherwords,wetestwhethertherelationshipbetweenthedependentvariableandtheindependentvariablesreallyshouldbelinearorwhetheranon-linearformwouldbemoreappropriate.Thetestworksbyaddingpowersofthefittedvaluesfromtheregressionintoasecondregression.Iftheappropriatemodelwasalinearone,thenthepowersofthefittedvalueswouldnotbesignificantinthissecondregression.IfwefailRamsey,sRESETtest,thentheeasiest“solution“isprobablytotransformallofthevariablesintologarithms.Thishastheeffectofturningamultiplicativemodelintoanadditiveone.Ifthisstillfails,thenwereallyhavetoadmitthattherelationshipbetweenthedependentvariableandtheindependentvariableswasprobablynotlinearafterallsothatwehavetoeitherestimateanon-linearmodelforthedata(whichisbeyondthescopeofthiscourse)orwehavetogobacktothedrawingboardandrunadifferentregressioncontainingdifferentvariables.8. (a)Itisimportanttonotethatwedidnotneedtoassumenormalityinordertoderivethesampleestimatesofaandorincalculatingtheirstandarderrors.Weneededthenormalityassumptionatthelaterstagewhenwecometotesthypothesesabouttheregressioncoefficients,eithersinglyorjointly,sothattheteststatisticswecalculatewouldindeedhavethedistribution(forF)thatwesaidtheywould.(b)Onesolutionwouldbetouseatechniqueforestimationandinferencewhichdidnotrequirenormality.Butthesetechniquesareoftenhighlycomplexandalsotheirpropertiesarenotsowellunderstood,sowedonotknowwithsuchcertaintyhowwellthemethodswillperformindifferentcircumstances.Onepragmaticapproachtofailingthenormalitytestistoplottheestimatedresidualsofthemodel,andlookforoneormoreveryextremeoutliers.Thesewouldberesidualsthataremuch“bigger”(eitherverybigandpositive,orverybigandnegative)thantherest.Itis,fortunatelyforus,oftenthecasethatoneortwoveryextremeoutlierswillcauseaviolationofthenormalityassumption.Thereasonthatoneortwoextremeoutlierscancauseaviolationofthenormalityassumptionisthattheywouldleadthe(absolutevalueofthe)skewnessand/orkurtosisestimatestobeverylarge.Oncewespotafewextremeresiduals,weshouldlookatthedateswhentheseoutliersoccurred.Ifwehaveagoodtheoreticalreasonfordoingso,wecanaddinseparatedummyvariablesforbigoutlierscausedby,forexample,wars,changesofgovernment,stockmarketcrashes,changesinmarketmicrostructure(e.g.the"bigbang”of1986).Theeffectofthedummyvariableisexactlythesameasifwehadremovedtheobservationfromthesamplealtogetherandestimatedtheregressionontheremainder.Ifweonlyremoveobservationsinthisway,thenwemakesurethatwedonotloseanyusefulpiecesofinformationrepresentedbysamplepoints.9. (a)Parameterstructuralstabilityreferstowhetherthecoefficientestimatesforaregressionequationarestableovertime.Iftheregressionisnotstructurallystable,itimpliesthatthecoefficientestimateswouldbedifferentforsomesubsamplesofthedatacomparedtoothers.Thisisclearlynotwhatwewanttofindsincewhenweestimatearegression,weareimplicitlyassumingthattheregressionparametersareconstantovertheentiresampleperiodunderconsideration.(b)1981M1-1995M12rt = 0.0215 + 1.491 rmt?SS=O.189T=1801981M1-1987M1Ort = 0.0163 + 1.308 rmt/?SS= 0.079T=821987M11-1995M12rt = 0.0360 + 1.613 rmt/?SS=0.082 T=98(c) Ifwedefinethecoefficientestimatesforthefirstandsecondhalvesofthesampleasaand,anda2and2respectively,thenthenullandalternativehypothesesareH0:=sandandHi:a2or2(d) TheteststatisticiscalculatedasTeststat.=RSS-(RSS.+RSS,)±(T-2&)0.189-(0.079+0.()82)180-4”,RSSl+RSS2k0.079+0.0822ThisfollowsanFdistributionwith(k,T-2kdegreesoffreedom.尺2,176)=3.05atthe5%level.Clearlywerejectthenullhypothesisthatthecoefficientsareequalinthetwosub-periods.10. Thedatawehaveare1981M1-1995M12 : 0.0215 + 1.491 Rmt/?SS=0.189=1801981M1-1994M12rt = 0.0212 + 1.478 Rmt?SS=O.148上1681982M1-1995M12rt = 0.0217 + 1.523 Rmt?SS=O.182=168First,theforwardpredictivefailuretest-i.e.wearetryingtoseeifthemodelfor1981M1-1994M12canpredict1995M1-1995M12.Theteststatisticisgivenby型g*X ="好3 W = 3.832RSSl0.14812Where71isthenumberofobservationsinthefirstperiod(i.e.theperiodthatweactuallyestimatethemodelover),andTiisthenumberofobservationswearetryingto"predict".Theteststatisticfollowsanfdistributionwith(Ti,Ti-Qdegreesoffreedom.尺12,166)=1.81atthe5%level.Sowerejectthenullhypothesisthatthemodelcanpredicttheobservationsfor1995.Wewouldconcludethatourmodelisnouseforpredictingthisperiod,andfromapracticalpointofview,wewouldhavetoconsiderwhetherthisfailureisaresultofa-typicalbehaviouroftheseriesout-of-sample(i.e.during1995),orwhetheritresultsfromagenuinedeficiencyinthemodel.Thebackwardpredictivefailuretestisalittlemoredifficulttounderstand,althoughnomoredifficulttoimplementTheteststatisticisgivenbyRSS-RSSi.Ti-k0.189-0.182.168-2n_*=*=().)32RSS、T20.18212Nowweneedtobealittlecarefulinourinterpretationofwhatexactlyarethe“first"and"second"sampleperiods.Itwouldbepossibletodefine71asalwaysbeingthefirstsampleperiod.ButIthinkiteasiertosaythatTiisalwaysthesampleoverwhichweestimatethemodel(eventhoughitnowcomesafterthehold-out-sample).ThusTiisstillthesamplethatwearetryingtopredict,eventhoughitcomesfirst.Youcanuseeithernotation,butyouneedtobeclearandconsistent.IfyouwantedtochoosetheotherwaytotheoneIsuggest,thenyouwouldneedtochangethesubscript1everywhereintheformulaabovesothatitwas2,andchangeevery2sothatitwasa1.Eitherway,weconcludethatthereislittleevidenceagainstthenullhypothesis.Thusourmodelisabletoadequatelyback-castthefirst12observationsofthesample.11. Bydefinition,variableshavingassociatedparametersthatarenotsignificantlydifferentfromzeroarenot,fromastatisticalperspective,helpingtoexplainvariationsinthedependentvariableaboutitsmeanvalue.Onecouldthereforearguethatempirically,theyservenopurposeinthefittedregressionmodel.Butleavingsuchvariablesinthemodelwilluseupvaluabledegreesoffreedom,implyingthatthestandarderrorsonalloftheotherparametersintheregressionmodel,willbeunnecessarilyhigherasaresult.Ifthenumberofdegreesoffreedomisrelativelysmall,thensavingacouplebydeletingtwovariableswithinsignificantparameterscouldbeuseful.Ontheotherhand,ifthenumberofdegreesoffreedomisalreadyverylarge,theimpactoftheseadditionalirrelevantvariablesontheothersislikelytobeinconsequential.12. Anoutlierdummyvariablewilltakethevalueoneforoneobservationinthesampleandzeroforallothers.TheChowtestinvolvessplittingthesampleintotwoparts.Ifwethentrytoruntheregressiononboththesub-partsbutthemodelcontainssuchanoutlierdummy,thentheobservationsonthatdummywillbezeroeverywhereforoneoftheregressions.Forthatsub-sample,theoutlierdummywouldshowperfectmulticollinearitywiththeinterceptandthereforethemodelcouldnotbeestimated.

    注意事项

    本文(introductory-econometrics-for-finance--Chapter4-solutions.docx)为本站会员(夺命阿水)主动上传,课桌文档仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知课桌文档(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-1

    经营许可证:宁B2-20210002

    宁公网安备 64010402000986号

    课桌文档
    收起
    展开